Structured derivations

Ralph-Johan Back

Abo Akademi University

Cadgme 2014, Halle

September 26, 2014

Ralph-Johan Back (Abo Akademi Univer

Structured derivations

September 26, 2014 1 / 16

Background

- Structured derivations combine Dijkstra's calculational style proofs with forward and backward proofs
 - intended as a high-level intuitive format for presenting mathematical arguments
 - main target: students in junior high school, high school and university introductory courses
 - level of formality in proofs can be freely chosen (i.e., allows also non-axiomatic proofs)
- Structured derivations have an exact syntax definition
 - gives guidance to students on how to formulate mathematical arguments
 - makes it easier to follow a mathematical argument, and to find errors in own argument
 - syntax works in all languages (by using special symbols)
 - can also have verbose syntax, e.g. to explain meaning of constructs
- Structured derivations proposed initially by Back and von Wright in 1998

- A structured derivation can be reduced to a natural deduction proof
- Structured derivations allow computer based checking of derivations
 - Interactive and automatic proof checkers: PVS, Isabelle,
 - SMT solvers: Yices and Z3,
 - CAS: Mathematica, Sage
- In practice, requires syntax analysis to transform standard mathematical notation to formulas that are understandable by mechanized proof systems
 - and taking into account different national traditions for mathematical notation

The problem is to determine the point on the parabola $y = x^2 - 2x - 3$ where the tangent of the parabola has a 45° slope.

We reformulate the problem as follows:

Determine the coordinates (x, y) on the parabola f, defined by $f(x) = x^2 - 2x - 3$ for x in \mathbb{R} , where the slope α of the tangent of the parabola is 45°.

We use observations to establish some preliminary results, before we solve the main problem.

Determine the point (x, y), where

- Determine the point (*x*, *y*), where
- (a) (x, y) is on the parabola f, and

- Determine the point (*x*, *y*), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and

(中) (문) (문) (문) (문)

(c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and

(中) (문) (문) (문) (문)

- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and

(中) (문) (문) (문) (문)

- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}
 - assumption (c)

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}
 - assumption (c)
 - $\equiv \qquad \{ \text{inclination coefficient } k = \tan \alpha \}$

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and
- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}
 - assumption (c)
 - $\equiv \{ \text{inclination coefficient } k = \tan \alpha \}$
 - tangent of the parabola has slope coefficient tan 45° in (x, y)

(日) (문) (문) (문) (문)

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and
- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}
 - assumption (c)
 - $\equiv \qquad \{ \text{inclination coefficient } k = \tan \alpha \}$
 - tangent of the parabola has slope coefficient tan 45° in (x, y)

(日) (문) (문) (문) (문)

 $\equiv \qquad \{\tan 45^\circ = 1\}$

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and
- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}
 - assumption (c)
 - $\equiv \qquad \{ \text{inclination coefficient } k = \tan \alpha \}$
 - tangent of the parabola has slope coefficient tan 45° in (x, y)

(日) (四) (문) (문) (문)

 $\equiv \{ \tan 45^\circ = 1 \}$ tangent of the parabola has slope coefficient 1 in point (x, y)

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and
- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}
 - assumption (c)
 - $\equiv \qquad \{ \text{inclination coefficient } k = \tan \alpha \}$
 - tangent of the parabola has slope coefficient tan 45 $^\circ$ in (x,y)
 - $\equiv \qquad \{\tan 45^\circ = 1\}$
 - tangent of the parabola has slope coefficient 1 in point (x, y)

(日) (문) (문) (문) (문)

 $\equiv \qquad \{ \text{first derivative of } f \text{ gives the slope coefficient} \}$

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and
- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}
 - assumption (c)
 - $\equiv \qquad \{ \text{inclination coefficient } k = \tan \alpha \}$
 - tangent of the parabola has slope coefficient $an 45^\circ$ in (x,y)
 - $\equiv \qquad \{ {\tt tan}\, 45^\circ = 1 \}$
 - tangent of the parabola has slope coefficient 1 in point (x, y)

◆□▶ ◆舂▶ ◆理▶ ◆理▶ 三臣…

 $\equiv \qquad \{ \text{first derivative of } f \text{ gives the slope coefficient} \} \\ f'(x) = 1$

- Determine the point (x, y), where
- (a) (x, y) is on the parabola f, and
- (b) parabola f is defined by $f(x) = x^2 2x 3$, for $x \in \mathbb{R}$, and
- (c) tangent of the parabola in point (x, y) has slope $\alpha = 45^{\circ}$
- [1] {determine the first derivative of f in point x}
 - assumption (c)
 - $\equiv \qquad \{ \text{inclination coefficient } k = \tan \alpha \}$
 - tangent of the parabola has slope coefficient tan 45 $^\circ$ in (x,y)
 - $\equiv \{\tan 45^\circ = 1\}$
 - tangent of the parabola has slope coefficient 1 in point (x, y)

 $\equiv \qquad \{ \text{first derivative of } f \text{ gives the slope coefficient} \} \\ f'(x) = 1$

.. f'(x) = 1

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへで

•
$$f'(x) = 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- f'(x) = 1
- $\equiv \{ \text{assumption (b), derivative of } f \text{ is defined by } f'(x) = 2x 2, \text{ for } x \in \mathbb{R} \}$

• f'(x) = 1 \equiv {assumption (b), derivative of f is defined by f'(x) = 2x - 2, for $x \in \mathbb{R}$ } 2x - 2 = 1

• f'(x) = 1 \equiv {assumption (b), derivative of f is defined by f'(x) = 2x - 2, for $x \in \mathbb{R}$ }

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

$$2x - 2 = 1$$

 \equiv {solve for x}

• f'(x) = 1 \equiv {assumption (b), derivative of f is defined by f'(x) = 2x - 2, for $x \in \mathbb{R}$ } 2x - 2 = 1 \equiv {solve for x} $x = \frac{3}{2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

• f'(x) = 1 \equiv {assumption (b), derivative of f is defined by f'(x) = 2x - 2, for $x \in \mathbb{R}$ } 2x - 2 = 1 \equiv {solve for x} $x = \frac{3}{2}$... $x = \frac{3}{2}$

《曰》 《聞》 《臣》 《臣》 三臣

⊩ (*x*,*y*)

- ◆ □ ▶ → @ ▶ → 注 ▶ → 注 → りへで

 $\parallel \qquad (x, y) \\ = \qquad \{ \text{observation } [2] \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $\Vdash (x,y)$
- $= \qquad \{ \text{observation [2]} \}$
 - $\left(\frac{3}{2},y\right)$
- = {assumption (a) and observation [2]}

- - $(\frac{3}{2}, (\frac{3}{2})^2 2(\frac{3}{2}) 3)$

- \vdash (x,y)
- $= \qquad \{ \text{observation [2]} \}$
 - $\left(\frac{3}{2},y\right)$
- = {assumption (a) and observation [2]}

$$(\frac{3}{2}, (\frac{3}{2})^2 - 2(\frac{3}{2}) - 3)$$

= {simplify}

- $(\frac{3}{2}, (\frac{3}{2})^2 2(\frac{3}{2}) 3)$ = {simplify}

$$(\frac{3}{2}, -\frac{15}{4})$$

$$\begin{split} \vdash & (x, y) \\ = & \{\text{observation [2]}\} \\ & (\frac{3}{2}, y) \\ = & \{\text{assumption (a) and observation [2]}\} \\ & (\frac{3}{2}, (\frac{3}{2})^2 - 2(\frac{3}{2}) - 3) \\ = & \{\text{simplify}\} \\ & (\frac{3}{2}, -\frac{15}{4}) \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

$$\begin{split} \Vdash & (x, y) \\ = & \{ \text{observation } [2] \} \\ & (\frac{3}{2}, y) \\ = & \{ \text{assumption } (a) \text{ and observation } [2] \} \\ & (\frac{3}{2}, (\frac{3}{2})^2 - 2(\frac{3}{2}) - 3) \\ = & \{ \text{simplify} \} \\ & (\frac{3}{2}, -\frac{15}{4}) \end{split}$$

• The point we are looking for is thus $(x, y) = (\frac{3}{2}, -\frac{15}{4})$.

э

∃ ► < ∃ ►</p>

Image: A matrix

⊩

=

=

=

observation

calculation as subderivation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

•
$$f'(x) = 1$$

 \equiv {assumption (a), derivative of f is defined by $f'(x) = 2x - 2$, for $x \in \mathbb{R}$ }
 $2x - 2 = 1$
 \equiv {solve x }
 $x = \frac{3}{2}$
 $x = \frac{3}{2}$
 $x = \frac{3}{2}$
solving task with calculation
 (x, y)
{observation [2]}
 $(\frac{3}{2}, y)$
{assumption (b) and observation [2]}
 $(\frac{3}{2}, (\frac{3}{2})^2 - 2(\frac{3}{2}) - 3)$
{simplify}
 $(\frac{3}{2}, -\frac{15}{4})$
End of derivation

- Two main syntactic categories
 - derivations
 - justifications
- Allows building arbitrary deep and arbitrary long derivations

derivation:

- question
- assumption
- ÷

:

- assumption
- + justification proposition
- + justification proposition
- ⊩ justification
 - term
- rel justification term
- ÷

rel justification

term

answer

- justification: {reason}
- derivation
- :
- :

derivation

• Structured derivations combine three main proof paradigms

- forward proofs (observations)
- backward proofs (justifications with subderivations)
- calculations
- Different proof paradigms can be used in same derivation
 - proof steps are different,
 - some arguments are best done as calculations
 - sometimes forward proofs are better, to gather facts needed later on,
 - sometimes backward steps are needed, as proof strategies for breaking up the proof in smaller, more manageable parts

12 / 16

derivation:

:

:

:

 \square

- question
- assumption
- assumption
- + justification proposition

(forward)

(backward)

(calculation)

- . + justification proposition
- ⊩ justification term
- rel justification term

rel justification term

answer

justification: {reason} derivation (subderivation) : : derivation (subderivation)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

Logic in high school

- Logic is everywhere in the high school curriculum
 - But it is hidden in informal arguments
 - This makes it more difficult for students to understands the logical arguments, they have to re-invent the logic for themselves
 - The best students will get it, many will never do that
 - In stead, they learn the argument templates by hearth, and apply them without understanding
- Propositional connectives and quantifiers can be used to structure the mathematical argument
 - example: conjunction and disjunction separate the argument into two independent parts
 - implication is proved by making additional assumptions
 - natural deduction inference rules are good proof strategies for partitioning the proof into smaller parts

14 / 16

We show an example of how logic can be used in practice in high school math.

The problem is to solve the inequality $(1+x)^2 \leq 1$

• $(1+x)^2 \leq 1$

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1 + 2x + x^2 \le 1$

We show an example of how logic can be used in practice in high school math.

The problem is to solve the inequality $(1+x)^2 \leq 1$

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1 + 2x + x^2 \le 1$

 \equiv {subtract 1 from both sides}

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1+2x+x^2 \le 1$
 \equiv {subtract 1 from both sides}

$$2x + x^2 \le 0$$

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1+2x+x^2 \le 1$
 \equiv {subtract 1 from both sides}

$$2x + x^2 \le 0$$

$$\equiv \qquad \{ \text{distribution rule: } ab + ac = a(b + c) \}$$

We show an example of how logic can be used in practice in high school math.

The problem is to solve the inequality $(1+x)^2 \leq 1$

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1+2x+x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x+x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b+c)$ }

x(2+x) < 0

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1+2x+x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x+x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b+c)$ }
 $x(2+x) \le 0$
 \equiv {rewrite the inequalities in an alternative form: $(a \le 0) \equiv (a = 0 \lor a < 0)$

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1+2x+x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x+x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b+c)$ }
 $x(2+x) \le 0$
 \equiv {rewrite the inequalities in an alternative form: $(a \le 0) \equiv (a = 0 \lor a < 0)$
 $x(2+x) = 0 \lor x(2+x) < 0$

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1+2x+x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x+x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b+c)$ }
 $x(2+x) \le 0$
 \equiv {rewrite the inequalities in an alternative form: $(a \le 0) \equiv (a = 0 \lor a < 0)$
 $x(2+x) = 0 \lor x(2+x) < 0$
 \equiv {solve the two disjuncts separately}

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1+2x+x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x+x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b+c)$ }
 $x(2+x) \le 0$
 \equiv {rewrite the inequalities in an alternative form: $(a \le 0) \equiv (a = 0 \lor a < 0)$
 $x(2+x) = 0 \lor x(2+x) < 0$
 \equiv {solve the two disjuncts separately}
• $x(2+x) = 0$

We show an example of how logic can be used in practice in high school math.

The problem is to solve the inequality $(1 + x)^2 \leq 1$

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a + b)^2 = a^2 + 2ab + b^2$ }
 $1 + 2x + x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x + x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b + c)$ }
 $x(2+x) \le 0$
 \equiv {rewrite the inequalities in an alternative form: $(a \le 0) \equiv (a = 0 \lor a < 0)$
 $x(2+x) = 0 \lor x(2+x) < 0$
 \equiv {solve the two disjuncts separately}
• $x(2+x) = 0$
 \equiv {zero product rule: $(ab = 0) \equiv (a = 0 \lor b = 0)$ }

15 / 16

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a + b)^2 = a^2 + 2ab + b^2$ }
 $1 + 2x + x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x + x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b + c)$ }
 $x(2 + x) \le 0$
 \equiv {rewrite the inequalities in an alternative form: $(a \le 0) \equiv (a = 0 \lor a < 0)$
 $x(2 + x) = 0 \lor x(2 + x) < 0$
 \equiv {solve the two disjuncts separately}
• $x(2 + x) = 0$
 \equiv {zero product rule: $(ab = 0) \equiv (a = 0 \lor b = 0)$ }
 $x = 0 \lor 2 + x = 0$

We show an example of how logic can be used in practice in high school math.

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a+b)^2 = a^2 + 2ab + b^2$ }
 $1+2x+x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x+x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b+c)$ }
 $x(2+x) \le 0$
 \equiv {rewrite the inequalities in an alternative form: $(a \le 0) \equiv (a = 0 \lor a < 0)$
 $x(2+x) = 0 \lor x(2+x) < 0$
 \equiv {solve the two disjuncts separately}
• $x(2+x) = 0$
 \equiv {zero product rule: $(ab = 0) \equiv (a = 0 \lor b = 0)$ }
 $x = 0 \lor 2 + x = 0$
 \equiv {subtract 2 from both sides in the right conjunct}

Ral

We show an example of how logic can be used in practice in high school math.

The problem is to solve the inequality $(1 + x)^2 \leq 1$

•
$$(1+x)^2 \le 1$$

 \equiv {binomial rule $(a + b)^2 = a^2 + 2ab + b^2$ }
 $1 + 2x + x^2 \le 1$
 \equiv {subtract 1 from both sides}
 $2x + x^2 \le 0$
 \equiv {distribution rule: $ab + ac = a(b + c)$ }
 $x(2 + x) \le 0$
 \equiv {rewrite the inequalities in an alternative form: $(a \le 0) \equiv (a = 0 \lor a < 0)$
 $x(2 + x) = 0 \lor x(2 + x) < 0$
 \equiv {solve the two disjuncts separately}
• $x(2 + x) = 0 \lor x(2 + x) < 0$
 \equiv {solve the two disjuncts separately}
• $x(2 + x) = 0$
 \equiv {zero product rule: $(ab = 0) \equiv (a = 0 \lor b = 0)$ }
 $x = 0 \lor 2 + x = 0$
 \equiv {subtract 2 from both sides in the right conjunct}
 $x = 0 \lor x = -2$

16

• x(2+x) < 0

- x(2+x) < 0
- $= \{ \mbox{a product is negative iff one factor is positive and the other is negative: } (ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0) \}$

- x(2+x) < 0
- $= \begin{cases} \text{a product is negative iff one factor is positive and the other is negative: } (ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0) \} \\ (x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0) \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- x(2+x) < 0
- $= \begin{cases} \text{a product is negative iff one factor is positive and the other is} \\ \text{negative: } (ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0) \end{cases} \\ (x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0) \\ \text{frimplify both drivingte} \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \equiv {simplify both disjuncts}

•
$$x(2+x) < 0$$

 $= \begin{cases} \text{a product is negative iff one factor is positive and the other is} \\ \text{negative: } (ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0) \} \\ (x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0) \\ \equiv \\ \{ \text{simplify both disjuncts} \} \\ (x < 0 \land x > -2) \lor (x > 0 \land x < -2) \end{cases}$

- x(2+x) < 0
- $= \{ \text{a product is negative iff one factor is positive and the other is negative: } (ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0) \} (x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0)$

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

 \equiv {simplify both disjuncts}

$$(x < 0 \land x > -2) \lor (x > 0 \land x < -2)$$

 $\equiv \qquad \{\text{the right disjunct is false for each } x\}$

•
$$x(2+x) < 0$$

 $= \begin{cases} \text{a product is negative iff one factor is positive and the other is} \\ \text{negative: } (ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0) \} \\ (x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0) \\ \equiv \\ \begin{cases} \text{simplify both disjuncts} \end{cases}$

(日) (四) (문) (문) (문)

$$(x < 0 \land x > -2) \lor (x > 0 \land x < -2)$$

 $\equiv \{ \text{the right disjunct is false for each } x \} \\ (-2 < x < 0) \lor F$

•
$$x(2+x) < 0$$

 \equiv {a product is negative iff one factor is positive and the other is
negative: $(ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0)$ }
 $(x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0)$
 \equiv {simplify both disjuncts}
 $(x < 0 \land x > -2) \lor (x > 0 \land x < -2)$
 \equiv {the right disjunct is false for each x}
 $(-2 < x < 0) \lor F$
 \equiv { $p \lor F \equiv p$ }

•
$$x(2+x) < 0$$

 \equiv {a product is negative iff one factor is positive and the other is negative: $(ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0)$ }
 $(x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0)$
 \equiv {simplify both disjuncts}
 $(x < 0 \land x > -2) \lor (x > 0 \land x < -2)$
 \equiv {the right disjunct is false for each x}
 $(-2 < x < 0) \lor F$
 \equiv { $p \lor F \equiv p$ }
 $-2 < x < 0$

•
$$x(2+x) < 0$$

 \equiv {a product is negative iff one factor is positive and the other is
negative: $(ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0)$ }
 $(x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0)$
 \equiv {simplify both disjuncts}
 $(x < 0 \land x > -2) \lor (x > 0 \land x < -2)$
 \equiv {the right disjunct is false for each x}
 $(-2 < x < 0) \lor F$
 \equiv { $p \lor F \equiv p$ }
 $-2 < x < 0$

...
$$(x = 0 \lor x = -2) \lor (-2 < x < 0)$$

•
$$x(2+x) < 0$$

 \equiv {a product is negative iff one factor is positive and the other is
negative: $(ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0)$ }
 $(x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0)$
 \equiv {simplify both disjuncts}
 $(x < 0 \land x > -2) \lor (x > 0 \land x < -2)$
 \equiv {the right disjunct is false for each x}
 $(-2 < x < 0) \lor F$
 \equiv { $p \lor F \equiv p$ }
 $-2 < x < 0$
 $(x = 0 \lor x = -2) \lor (-2 < x < 0)$

 $\equiv \qquad \{ {\rm combine \ the \ conditions} \}$

. . .

•
$$x(2+x) < 0$$

 \equiv {a product is negative iff one factor is positive and the other is
negative: $(ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0)$ }
 $(x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0)$
 \equiv {simplify both disjuncts}
 $(x < 0 \land x > -2) \lor (x > 0 \land x < -2)$
 \equiv {the right disjunct is false for each x}
 $(-2 < x < 0) \lor F$
 \equiv { $p \lor F \equiv p$ }
 $-2 < x < 0$
 \dots $(x = 0 \lor x = -2) \lor (-2 < x < 0)$
 \equiv {combine the conditions}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $-2 \le x \le 0$

. . .

•
$$x(2+x) < 0$$

 \equiv {a product is negative iff one factor is positive and the other is
negative: $(ab < 0) \equiv (a < 0 \land b > 0) \lor (a > 0 \land b < 0)$ }
 $(x < 0 \land 2 + x > 0) \lor (x > 0 \land 2 + x < 0)$
 \equiv {simplify both disjuncts}
 $(x < 0 \land x > -2) \lor (x > 0 \land x < -2)$
 \equiv {the right disjunct is false for each x}
 $(-2 < x < 0) \lor F$
 \equiv { $p \lor F \equiv p$ }
 $-2 < x < 0$
 $(x = 0 \lor x = -2) \lor (-2 < x < 0)$
{combine the conditions}

$$-2 \le x \le 0$$

... ≣

 \square