
Teaching loci and envelopes in GeoGebra?

Francisco Botana1 and Zoltán Kovács2

1 Dept. Applied Mathematics I, University of Vigo,
Campus A Xunqueira,

E-36005 Pontevedra, Spain
fbotana@uvigo.es

2 Dept. Mathematics Education, Johannes Kepler University,
Altenberger Strasse 54,
A-4040 Linz, Austria,
zoltan@geogebra.org

Abstract. GeoGebra is open source mathematics education software being
used in thousands of schools worldwide. Since version 4.2 (December 2012)
it supports symbolic computation of locus equations as a result of joint effort
of mathematicians and programmers helping the GeoGebra developer team.
The joint work, based on former researches, started in 2010 and continued
until present days, now enables fast locus and envelope computations even in
a web browser in full HTML5 mode. In conclusion, classroom demonstrations
and deeper investigations of dynamic analytical geometry is ready to use on
tablets or smartphones as well.
In our talk we consider some typical secondary school topics when investi-
gating loci is a natural way of defining mathematical objects. Such topics
include definition of a parabola and other conics in different situations like
synthetic definitions or points and curves associated with a triangle. In most
secondary schools, however, no other than quadratic curves are discussed,
but generalization of some exercises and also every day problems will in-
troduce higher order algebraic curves. Thus our talk will mention the cubic
curve “strophoid” as locus of heights of a triangle when one of the vertices
moves on a circle. Also quartic “cardioid” and sextic “nephroid” can be of
every day interest when investigating mathematics in a coffee cup.
We will also focus on GeoGebra specific tips and tricks when constructing
a geometric figure to be available for getting the locus equation. Among
others, simplification and synthetization (via the intercept theorem) will be
mentioned.

1 Introduction

1.1 Overview

GeoGebra [1] is open source mathematics education software being used by millions
of users worldwide. It is mainly used to visualize mathematical relations in a dynamic
way by supporting reading correlations off not only visually but also numerically.

? Original version of this paper has been published as a GeoGebraBook at http://www.

geogebratube.org/student/b128631

http://www.geogebra.org
http://www.geogebratube.org/student/b128631
http://www.geogebratube.org/student/b128631


This approach has been continuously extended since 2004 by using an embedded
computer algebra system (CAS) in GeoGebra in version 2.4. In those days CAS JSCL
was used which has been changed to Jasymca [2] (2008, GeoGebra 3.0), Jama [3]
(2009, GeoGebra 3.2), Yacas/Mathpiper [4] (2011, GeoGebra 3.2-4.0), Reduce [5]
(2011, GeoGebra 4.2) and Giac [6] (2013, GeoGebra 4.4).

Red period means continuous development phase in GeoGebra. Orange period shows
stable phase with no longer development.

Interest in using CAS support in GeoGebra started a more specialized interest
in computing the algebraic equation of more general geometric objects than lines
and circles, namely locus equations. A team of mathematicians (including the first
author) located in Spain offered scientific partnership and collaboration for the Ge-
oGebra team (including the second author) located in Austria, and their joint work
was funded by the Google Summer of Code program in 2010 by supporting a Span-
ish university student Sergio Arbeo to implement the computation of algebraic locus
equations for GeoGebra 4.0. Arbeo programmed the computations by using an extra
CAS JAS [7] in GeoGebra, but his code was later modified by the second author to
use Reduce (and even later Giac) instead.

As a result, locus equation computations are already present in GeoGebra since
version 4.2 and because of the numerous user feedback the newer versions (including
GeoGebra 5) contain some additional enhancements and bug fixes as well. Also
many users found the introduced LocusEquation command useful and easy to use
in education as well. In Section 2 we consider some possible classroom uses for the
LocusEquation command.

However Arbeo covered a wide set of classroom problems, meanwhile new math-
ematical methods appeared to handle some problematic situations. The joint work
[8] of Montes, Recio, Abánades, Botana and the Singular CAS team yielded to have
a powerful method to compute locus equations by using the Gröbner cover (grobcov)
package in Singular. In this way GeoGebra has been extended to outsource compu-
tations to SingularWS [9,10], an external web service computing locus equations for

http://webuser.hs-furtwangen.de/~dersch/jasymca2/indexEN.html
http://math.nist.gov/javanumerics/jama/
http://www.mathpiper.org/
http://www.reduce-algebra.com/
http://www-fourier.ujf-grenoble.fr/~parisse/giac.html
http://www.serabe.com/tag/gsoc/
http://krum.rz.uni-mannheim.de/jas/
http://dx.doi.org/10.1016/j.cad.2014.06.008
https://code.google.com/p/singularws/


GeoGebra (among other computations). This method has been found extensible to
compute not only locus equations but envelopes as well. In Section 3 we show some
of these envelopes, pointing out the possibility of introducing them also in secondary
schools.

2 Loci

2.1 An example

According to Wikipedia, locus is a set of points whose location satisfies or is deter-
mined by one or more specified conditions. Being more specific, in GeoGebra locus
is the set of output points P’ constructed by given steps while the input point P is
running on a certain path. In other words, let point P be an element of a path, and
let point P’ is the output point for the chosen input P after some transformations
of P into P’.

In general the locus is a curve as the output set of points P’, since also the input
points P build up a curve. For example, let the input curve be circle c and P is a
perimeter point of c. Let the center of the circle be C. Now let us construct point
P’ such that P’ is the midpoint of PC. Clearly, the locus curve here is also a circle
described by center C and half of the radius of c.

This example can be entered into GeoGebra either by using the graphical user
interface with the mouse, or by the keyboard in the Algebra Input (here we put point
C into (2, 3) and use radius 4):

– C=(2,3)
– c=Circle[C,4]
– P=Point[c]
– P’=Midpoint[P,C]
– Locus[P’,P]

Now by using LocusEquation[P’,P] instead of Locus[P’,P] we can also check
the result algebraically: an implicit curve is displayed with the equation x2 − 6x +
y2− 4y = −9. It is also possible to see how the equation changes dynamically when
point C is dragged.

How can this equation be computed mathematically? Let us define coordinates
xC , yC , xP , yP , xP ′ and yP ′ for the points defined above. Now the following
equations are valid:

1. xC = 2
2. yC = 3
3. (xP − xC)

2 + (yP − yC)
2 = 42

4. xP ′ = xP+xC

2

5. yP ′ = yP+yC

2

What we need is to convert this equation system to a single equation contain-
ing only coordinates of point P’. In algebra this computation is called elimination,
i.e. eliminating all variables except xP ′ and yP ′ .



In GeoGebra this computation is achieved by the Giac CAS in the background,
but it can also be computed directly by using a GeoGebra command (which calls the
appropriate Giac statement):

Here the user can add command LocusEquation[loc1] to make GeoGebra com-
pute the equation automatically. By clicking on the marble to the left of the input
line GeoGebra will also display the geometric form of the equation, i.e. another circle
will be drawn (the same as loc1).

2.2 Classroom examples

Definition of a parabola. Maybe the most natural example to illustrate how use-
ful loci are is definition of a parabola. As Wikipedia writes it is the set of points
equidistant from a single point (the focus) and a line (the directrix). This definition
is for beginners, however, not easy to handle. There is at least one abstract step in-
between, namely that to find the distance from a line we may need a perpendicular
being drawn.

Thus, when focus F and directrix d are given, constructing one point P of
parabola p is as follows:

1. Choose an arbitrary point D of d.
2. Construct a perpendicular line to d on D.
3. Construct the bisector b of D and F.
4. Let the intersection point of the perpendicular line and b be P.
5. Now P is a point of parabola p since PD=PF (because bisector b is actually the

axis for the mirroring of point D to F).



In fact drawing bisector b is also a hidden step since we implicitly used some
basic properties of the reflection.

This kind of definition of the parabola is usual in many secondary schools, how-
ever the equivalence of this definition and the analytical one (that is, the usual
formula for a parabola is y = ax2 + bx + c for some constants a, b and c) is not
obvious.

In the figure we can see a dark red dashed parabola which is the real locus drawn
by GeoGebra numerically. The lighter red curve has been computed symbolically by
the LocusEquation command. In this special case these two curves are exactly the
same. We will see some examples below where it is not the case. The reason comes
from the algorithm we use to compute the equation. (In many cases the symbolical
result can be improved by using extended algorithms.)

Locus of the orthocenter. A parabola can also be obtained by getting the ortho-
center points of a triangle if two vertices are fixed and the third one moves on a line
which is parallel to the opposite side.



In this figure point A is constrained by line PQ. Students can drag point A on
line PQ and see how the orthocenter D is changing meanwhile. It is not obvious to
prove that the locus here is a parabola, but the students are able at least to get
experience by changing points B and C by preserving parallelism of lines PQ and
BC.

On the other hand, the locus equation will not be essentially different on other
positions of P, Q, B and C: it will be quadratic in most sets of positions. Some
of these positions seem easy to investigate, for example when PQ is perpendicular
to BC (here the result will be a linear equation). Others, for example by putting P
to (1, 1) and not changing anything else in the set, the locus result is a hyperbola,
namely x2 + xy + y = 5. First, this formula is hard to analyze in secondary school
since it is not in explicit form like a function y = f(x). Second, this formula is still a
quadratic implicit equation and thus it can open horizons of generalization to cover
all kind of conics.

In case P=(1, 1), Q=(2, 0), B=(3, 1), C=(3, 1) the computed locus equation is
−xy − x+ y2 + 3y = −2, i.e. −xy − x+ y2 + 3y + 2 = 0 whose left hand side is
the product of (y + 1) and (y − x + 2), two lines, namely y = −1 and y = x − 2
written in the usual explicit form. In this constellation height of side AB always
lies on line CQ since it is perpendicular to PQ. Thus point D will also lie on line
CQ, so it seems sensible that the locus equation is CQ in this case. Unfortunately,
GeoGebra’s LocusEquation shows an extra line here, not only CQ (which has the
explicit equation y = x− 2) but also another one. This example shows that the real
locus may be a subset of the result of the LocusEquation command.

One further step forward is to constrain point A on a circle, not a line. In this
way we can obtain non-quadratic locus equations like the strophoid formula which
is a cubic one.



Here points P and Q define a circle which has perimeter point A as a constraint.
In this figure a quartic equation is shown, but the real locus is a cubic curve.

That is an extra component is shown (here line x = −1) as in many other cases
when dragging points P, Q, B or C. On the other hand, by moving point P down, for
example into (−1, 1) or (−1, 0), the locus is the same as LocusEquation computes:
in these cases the locus is a real quartic curve.

A beautiful side case is when B=P and C=Q. In this case the real locus is a
right strophoid [10] curve and an extra line component is drawn on points C and Q.

2.3 Technical details

Computational background. We think that most Readers of this papers are neither
technicians, nor mathematicians, but teachers. Nevertheless, it is good to know some
computational details how the LocusEquation command works.

Computing a locus equation can be time consuming even for fast computers.
Basically, a set of equations has to be created in the background: the more objects
we have in our construction, the more variables and equations we need. After setting
up algebraic equations, they have to be solved symbolically in an efficient way. For
this task we use Gröbner bases [11].

GeoGebra uses the Giac computer algebra system to compute Gröbner bases
as efficiently as possible, but the general method is still double exponentional in
the number of variables. On the other hand, Giac runs in a web browser in today’s
computers, and this slows down computations by almost one magnitude. (This means
that computing locus equation in the desktop version of GeoGebra is still much faster
than observing the construction in a web browser. For the future, however, there
are plans to speed up JavaScript computations by substituting them with native
instructions.)

http://mathworld.wolfram.com/RightStrophoid.html


Giac is a powerful CAS, but it can slow down if extreme input must be
processed. That is why it is desired to solve equations only having integer co-
efficients. To achieve this, it is suggested to use so-called dynamic coordinates
in GeoGebra: to create free points A’, B’, C’, . . . first and then define point
A=DynamicCoordinates[A’,round(x(A’)),round(y(A’))], then use similar defi-
nitions for points B and C and so on.

Also using “easy” coordinates will speed up computations. For example, putting
A into the origin, B on the x-axis and using small integers instead of larger numbers
may decrease computation time significantly.

Supported construction steps. Since the Gröbner basis computation assumes
algebraic (polynomial) equations, there are restrictions for the available construction
steps for the LocusEquation command. First of all, only Euclidean construction
steps are supported. Even if a step could be converted into a Euclidean construction,
some non-trivial way of wording are not supported, for example, when the user
defines a parabola by entering its explicit formula, then it cannot be discovered
by the LocusEquation command at the moment. Instead, the parabola must be
constructed by using the appropriate GeoGebra tool.

Most Euclidean two dimensional construction steps are already supported.
Javadoc at the GeoGebra Developer Wiki [12] provides with a full list of them.

If a geometry problem is described fully or partially by formulas, it may be difficult
to translate it to a purely Euclidean construction. Below we will see an example how
this can be achieved.

Agnesi’s witch. Here we provide two examples to implement Agnesi’s witch [13]
in GeoGebra. The first approach will be a general way which will result in slow
computation and some extra components. The second approach will be much faster
and results only in one extra component.

For the first approach we simply consider the formula y = 1
x2+1 . Here we need to

define the unit (1) and compute the square of x based on this unit, then add these
two lengths. Then we need to compute the reciprocal of the result, and translate
the final length y to the correct position of the coordinate system.

In this figure we can see a numerical locus in red and a symbolical locus in blue.
In fact Agnesi’s curve is just a part of these curves since the conversion of its formula
will introduce extra components. Let us follow the steps we made in this figure:

http://dev.geogebra.org/trac/wiki
http://en.wikipedia.org/wiki/Witch_of_Agnesi


1. Point A is created (origin).

2. Point B is created, (0, 1).

3. Line a is the y-axis.

4. Line b is the x-axis.

5. Point C lies on the x-axis, it will be the projection of a point of the curve to the
x-axis, i.e. its abscissa will be x.

6. We will use the intercept theorem [14] to construct x2. So we create a triangle
with sides having length 1 (AB) and x (AC). This triangle will be right, but this
property is not necessary. The third side of the triangle will be line c.

7. For the intercept theorem we prepare length x also on line AB by drawing circle
d.

8. Point D is intersection of line a and circle d. (In fact there are two intersection
points here, but we use the “upper” one.) Now AD=x.

9. Line e is parallel to D and lies on D.

10. Point E is intersection of line b and d. By using the intercept theorem obviously
AE=x2.

11. We are preparing addition, thus we draw another circle f around the origin having
unit radius.

12. Point F is intersection of line b and circle f. (In fact there are two intersection
points here, but we use the “left” one.) Now EF=x2 + 1.

13. We would like to copy the unit length, so we create segment g as the unit (i.e.,
AB).

14. Circle h is around point E with unit radius.

15. Line i is perpendicular to line b and lies on point E.

http://en.wikipedia.org/wiki/Intercept_theorem


16. Point G is intersection of line i and circle h. (In fact there are two intersection
points here, but we use the “upper” one.) Now GE is a copy of the unit. This
is a preparation for applying another intercept theorem.

17. We will use triangle EFG for the intercept theorem, thus we draw line FG as line
j.

18. Point H is again an intersection of circle h and line b. (The “left” one.) Now we
copied the unit as EH, too.

19. Drawing line k as a parallel one with line j through H.

20. Intersection of lines i and k is point I.

21. Now applying the intercept theorem for length IE we obtain IE= 1
x2+1 . This will

be y.

22. Now we will copy this length to point C orthogonally. Thus we draw a perpen-
dicular with line b through C. This will be line m.

23. We copy length IE to point C upwards, thus we draw circle p around C with
radius IE.

24. “Upper” intersection point of m and p will be point J.

25. Locus of point J while C is moving on the x-axis is what we search for. In fact,
only those points J are proper which have positive abscissa.

26. Finally, LocusEquation shows a 12 degree polynomial, x8y4−2x4y4−2x4y2+
y4 − 2y2 + 1, which is a product of the cubic Agnesi curve and its reflection to
the x-axis, and two other cubics (reflections of each other), namely x2y− y− 1,
x2y − y + 1, x2y + y − 1 and x2y + y + 1.

After finishing this construction it is clear that we almost surely obtain extra
components since it is impossible to exclude the “right” intersection point in steps
12 and 18, for example. The construction process described above illustrates the
weakness of the Euclidean (i.e. in fact algebraic) method.

Finally we refer to a more simple definition of Agnesi’s curve, also used by a
Google “doodle” on the 296th anniversary of Maria Agnesi’s birth on 16 May 2014.

This “easy” definition allows GeoGebra to show Agnesi’s witch much faster than
above and make it computationally possible to drag the input points even in a web
browser. Of course, in many cases such a simplification is an intellectual challenge
by searching for algebraic or geometric simplifications to result in less variables in
the Gröbner basis computations.



As an exercise, we leave to the Reader to prove that the trace of point F is
y = 1

x2+1 if B is in the origin, A=(0, 1/2) and C=(0, 1). Also an exercise in GeoGebra
to improve this figure: use DynamicCoordinates instead of point capturing to grid
points (which yields non-continuous motion for point D). Another improvement can
be to put the equation text into a fix position, preferably in the second Graphics
View.

3 Envelopes

3.1 Motivation

A definition of a circle, according to The Free Dictionary is a plane curve everywhere
equidistant from a given fixed point, the center. Now by constructing the tangent
line in a point of the circle we find that the tangent is perpendicular to the radius.
When considering the trace of the tangent lines, we find that the union U of the
tangents of a circle is the whole plane except the disc inside the circle.



Now let us consider the same figure from another point of view. Having the set
U we may be interested of a curve such that its tangents are the lines of U . Such
a curve can be the given circle, but that it is the only possible curve (that is, the
question has a unique answer) is not straightforward.

On the other hand, each element of U is equidistant from the center of the circle
because distance is defined by measuring orthogonal projection. This idea leads us
to define a parabola by considering the set U ′ of lines being equidistant from a given
point F and a given line d. To measure the distance from line d we consider each
point D of line d and take the perpendicular bisector of points F and D.

We have already mentioned in the previous section that usual definition of a
parabola p’ is that it is the locus of points P’ which are equidistant from focus
F’ and directrix d’. Now let D’ be an arbitrary point of d’, line b the bisector of
segment F’D’ and P’ the intersection of the perpendicular to d’ in D’ and b. A
well-known property of b that it is the tangent of parabola p’ in point P’. To prove
that, consider the following figure.



Let us assume that b is not a tangent of parabola p’ in point P’. Then there
is another point P” on b, also element of the parabola, that is b is a secant line
of p’. Assumably this point P” was created by foot point D” (element of d’), for
which D”P”=P”F’. Since b is the bisector of D’F’, also D’P”=P”F’ holds. But
this means that D’P”=D”P”, that is in triangle D’D”P” (which is a right triangle)
hypothenuse D’P” and cathetus D”P” have the same length, which is impossible.
This contradiction ensures that b is a tangent, not a secant.

Thus we proved that these two different definitions of a parabola (i.e. the classical
one by using locus, and this second one which uses the concept of trace of the
bisector) are equivalent, that is they define the same parabola.

3.2 A detailed example

String art, or pin and thread art, according to Wikipedia [15], is characterized by
an arrangement of colored thread strung between points to form abstract geometric
patterns or representational designs such as a ship’s sails, sometimes with other
artist material comprising the remainder of the work.

http://en.wikipedia.org/wiki/String_art


In the figure above strings play the same role as tangents in the previous ex-
amples. As Markus Hohenwarter, inventor of GeoGebra refers in paper GeoGebra:
Vom Autodesign zur Computerschriftart (2008) [16] and in the 8th chapter of the
GeoGebra 4.4 Introductory Book [17] (2013), the segments we can see are tangents
to a quadratic Bézier curve.

In the following applet [18] one can do a similar experiment by using GeoGebra,
and eventually use its Envelope command to check whether the resulted contour
curve is quadratic.

YouTube video at https://www.youtube.com/watch?v=V-Cq2VMsiZw

http://www.fachgruppe-computeralgebra.de/data/JdM-2008/Sonderheft.pdf
http://www.fachgruppe-computeralgebra.de/data/JdM-2008/Sonderheft.pdf
http://geogebratube.org/student/m135151
https://www.youtube.com/watch?v=V-Cq2VMsiZw


By no mean the activity to draw the segments AB while A is dragged on grid
points between (0, 0) and (0,10)—and meanwhile B is moved between (10, 0) and
(0, 0)—is an easy task for many types of school pupils. Also the result as getting the
contour of the segments can be expected to be a straightforward way of the next
step of understanding. However, obtaining the envelope equation is at a different
step of difficulty level.

First of all, the obtained equation is of 5th grade, containing not only the curve
itself, but its reflection to the x-axis, and also the x-axis itself. This equation is
x4y−40x3y−2x2y3+600x2y−120xy3−4000xy+y5−200y3+10000y = 0 which
is an implicit equation, but it can be factorized into three factors. Unfortunately,
factorization is not discussed at secondary level, so we need to find another approach
to go into the very details.

Fortunately, all these problems can be managed in secondary school by changing
the construction in some sense. On one hand, we will rotate the axes by 45 degrees
to obtain an explicit equation: in this case one of the parabolas can be written in
form y = ax2 + bx+ c. On the other hand, we will use magnification of 10, so that

we will obtain parabola y = x2

2 + 1
2 which can be described with directrix y = 0 and

focus (0, 1).

Now we prove that segment AB is always a tangent of the parabola described
above. We will use only such methods which can be discussed in a secondary school
as well. We would like to compute the equation of line AB to find the intersection
point T of AB and the parabola.

So first we recognize that if point A=(−d, d), then point B=(1−d, 1−d). Since
line AB has an equation in form y = ax + b, we can set up equations for points A
and B as follows: d = a · (−d)+ b (1) and 1− d = a · (1− d)+ b (2). Now (1)− (2)
results in a = 1− 2d and thus, by using (1) again we get b = 2d− 2d2.



Second, to obtain intersection point T we consider equation ax + b = x2

2 + 1
2

which can be reformulated to search the roots of quadratic function x2

2 −ax−b+ 1
2 .

If and only if the discriminant of this quadratic expression is zero, then AB is a
tangent. Indeed, the determinant is (−a)2 − 4 · 1

2 · (−b+ 1
2 ) = a2 +2b− 1 which is,

after expanding a and b, obviously zero.

Despite this is an analytical proof, by computing the x-coordinate of T (which
is a = 1− 2d) the Reader may think of finding a synthetic proof as well.

3.3 Mathematics in the coffee cup

The nephroid curve (see inside the coffee cup on Stuart Levy’s photo [19] above) is
a 6th order algebraic curve defined by the envelope of a set of mirrored light rays
as a family of curves. Unfortunately, computationally it is rather complex to solve
the corresponding equation system, thus it is inconvenient to use the Envelope
command with the recent version of GeoGebra.

From the optical point of view, there are two approaches. One possibility is to
assume that the source of the light is a point. In this case the rays will be concurrent.
The other possibility is to assume that the source is infinitely distant, in this case
the rays will be parallel. Clearly, the second case is the mathematical “limit” of the
first one since if the point converges to infinity, the models will be closer and closer
to each other.

The first approach is computationally easier. In the following figure we can in-
vestigate the model of the concurrent rays by using the Java desktop version of
GeoGebra.

http://www.geom.uiuc.edu/~fjw/calc-init/nephroid/


GeoGebra applets in GeoGebraBooks use Giac, but newest versions of GeoGebra
can be configured to use faster methods than Giac has. In the following video we
can learn how the Java desktop version can be started to use or not use the external
computation machine SingularWS with the embedded Gröbner cover algorithm.



YouTube video at https://www.youtube.com/watch?v=nV_C4N7mWGs

Finally, the approach of the parallel rays is computationally the most difficult
one. It is impossible for Giac to compute the envelope equation in a reasonable
time, thus we have to force using SingularWS and the Gröbner cover method by
using the command line:

https://www.youtube.com/watch?v=nV_C4N7mWGs


YouTube video at https://www.youtube.com/watch?v=-mGTaJR2zyw

As we can see in the above videos, in the parallel case there are two extra
components which can be separated by factorization. But also in the concurrent
case when the source of the light is a perimeter point of the circle there is an extra
component.

Conclusion. As Sander Wildeman [20] remarks, once you have written an article
about caustics you start to see them everywhere. His illustration is mathematics
on the bottom of an empty water bucket caused by a light bulb on the ceiling.
We can only agree: mathematics is everywhere, not only in geometric forms of
basic objects but various loci and envelopes. Mathematics is indeed everywhere—so
maths teachers can build motivation on emphasizing these not well known facts in
the modern era of education.

https://www.youtube.com/watch?v=-mGTaJR2zyw
http://www.phikwadraat.nl/huygens_cusp_of_tea/


References

1. http://www.geogebra.org

2. http://webuser.hs-furtwangen.de/~dersch/jasymca2/indexEN.html

3. http://math.nist.gov/javanumerics/jama/

4. http://www.mathpiper.org/

5. http://www.reduce-algebra.com/

6. http://www-fourier.ujf-grenoble.fr/~parisse/giac.html

7. http://krum.rz.uni-mannheim.de/jas/

8. M. Á. Abánades, F. Botana, A. Montes, T. Recio. An algebraic taxonomy for lo-
cus computation in dynamic geometry. Computer-Aided Design (56), November 2014,
p. 22–33 (to appear)

9. https://code.google.com/p/singularws/

10. F. Botana, Z. Kovács, S. Weitzhofer. Implementing theorem proving in GeoGebra
by using a Singular webservice, Proceedings EACA 2012. Libro de Resúmenes del XIII
Encuentro de Álgebra Computacional y Aplicaciones, p. 67–70. Univ. of Alcalá (Spain),
2012

10. http://mathworld.wolfram.com/RightStrophoid.html

11. B. Buchberger. An Algorithm for Finding the Bases Elements of the Residue Class
Ring Modulo a Zero Dimensional Polynomial Ideal (German). PhD thesis, Univ. of
Innsbruck (Austria), 1965

12. http://dev.geogebra.org/trac/wiki

13. http://en.wikipedia.org/wiki/Witch_of_Agnesi

14. http://en.wikipedia.org/wiki/Intercept_theorem

15. http://en.wikipedia.org/wiki/String_art

16. M. Hohenwarter. GeoGebra: Vom Autodesign zur Computerschriftart (German). Com-
puteralgebra Rundbrief, Sonderheft zum Jahr der Mathematik, April 2008, p. 9–10

17. www.geogebra.org/book/intro-en.pdf

18. http://geogebratube.org/student/m135151

19. http://www.geom.uiuc.edu/~fjw/calc-init/nephroid/

20. http://www.phikwadraat.nl/huygens_cusp_of_tea/

http://www.geogebra.org
http://webuser.hs-furtwangen.de/~dersch/jasymca2/indexEN.html
http://math.nist.gov/javanumerics/jama/
http://www.mathpiper.org/
http://www.reduce-algebra.com/
http://www-fourier.ujf-grenoble.fr/~parisse/giac.html
http://krum.rz.uni-mannheim.de/jas/
https://code.google.com/p/singularws/
http://mathworld.wolfram.com/RightStrophoid.html
http://dev.geogebra.org/trac/wiki
http://en.wikipedia.org/wiki/Witch_of_Agnesi
http://en.wikipedia.org/wiki/Intercept_theorem
http://en.wikipedia.org/wiki/String_art
www.geogebra.org/book/intro-en.pdf
http://geogebratube.org/student/m135151
http://www.geom.uiuc.edu/~fjw/calc-init/nephroid/
http://www.phikwadraat.nl/huygens_cusp_of_tea/

	Introduction
	Overview

	Loci
	An example
	Classroom examples
	Technical details

	Envelopes
	Motivation
	A detailed example
	Mathematics in the coffee cup


