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Using the Cauchy formula for the nth integral
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Use the fractional integral to obtain the derivative of order α > 0: let m be the ceiling of α, i.e., the
intger for which m-1<α<m. Then, differentiate m times the fractional integral Im--α .
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 Real practical applications are motivating, but they need deep theories: differential equations, 
Complex analysis, Fourier  and Laplace transform, Physics, Chemistry…

 How to introduce the concepts by only using the elementary analysis
 Difficulties in visualization and interpretation due to the lack direct geometric meaning (like

area ortangent line)
 Which definition should be used first? What is the main difference between them?
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A motivating example: the Gamma function 
Task: Extend n! := 1 2 3 … n to .

Idea:  Use integration by parts:

Result: a natural extension of n!:

i.e., the Gamma function,  which gives
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Iterate the antiderivative

Then – and now
In the end of the 17th century L'Hospital asked Leibniz about the sense of :

i.e., the  fractional derivative of order. Leibniz's answer was: 
"An apparent paradox, from which one day useful consequences will be drawn."

Nowadays, the fractional - order calculus plays an important role in physical and other
applications, as viscoelastic materials, fluid flow, diffusive transport, electrical networks,
electromagnetic theory, probability and others.
Here a simple way of extension of the derivative and antiderivative to fractional order will be 
presented.
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Introduction

Fractional derivative

The concept of fractional integral by Riemann-Liouville
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Definition of fractional intergal
Properties:
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The positive integer n can be replaced by any 0.
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Remark: Convolution
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The convolution between two funtions
can be given as:

Simple properties
hfgfhgf  )(Distributive:

Commutative: fggf 
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More examples

Rgf  ),0[:,

Other definitions

Didactic summary - difficulties

The Riemann-Liouville definition can be applien to a wide class of functions, but the derivatives of
the constant function is not zero. There are different ways of defining diffintegrals depending on
applications and trying to resolve the problems of initial values. They can be applied to different
classes of functions.

hgfhgf  )()(Associative:

Definition by Caputo
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First derivate, then integrate:

Definition by Grünwald-Letnikov
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Fractional differential equations
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A historical application of fractional calculus

The problem is to find a curve in the (x,y)-plane such
that the time required for a particle to move down
along the curve to its lowest point is independent of
its initial placement on the curve. In deriving the
known ordinary differential equation

The Tautochrone problem
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A simple example: f (t) = 1
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Now, join the above definitions:  Let R: 

Consider f (t) = 1 again:



 

otherwise      0
  1t0   fort       

Where n is the ceiling of 

Diffintegrals of f (t) = 1:

Here one can see the diffintegrals of two well known functions.  Colors are legended above. 
Formulas are somewhat „ugly”, hence missed. 

Some technical functions:

f (t) = e-t

=-2  …  2, step=0.5
f (t) = sin(t)
=-2  …  2, step=0.5

f (t) = 
=-1  …  1, step=0.25

f (t) =

=-1  …  1, step=0.25


 

otherwise      0
  2t0   for       1|1-t|-

1st  and th order linear equations

Linear oscillations with fractional terms

Unified definition of Differintegrals
The Riemann-Liouville differintegral
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Classical equation: x’’ + b x’ + k2 x = p(t)

Some fractional equations form applications (  1): 

x’’ + b x’ + k2 I (x’) = p(t)

x’’ + b D (x) + k2 x = p(t)

D (x’) + b x’ + k2 x = p(t)
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The Caputo’s diffintegral appears where is the length along the curve

measured from the origin. See details in [1].

T
)(

g2
)y(D

2
1

2/1C





