Publications

Fehlermeldung

  • Deprecated function: preg_match(): Passing null to parameter #2 ($subject) of type string is deprecated in rename_admin_paths_url_outbound_alter() (Zeile 64 von /var/www/cermat.org/sites/all/modules/rename_admin_paths/rename_admin_paths.module).
  • Deprecated function: preg_match(): Passing null to parameter #2 ($subject) of type string is deprecated in rename_admin_paths_url_outbound_alter() (Zeile 82 von /var/www/cermat.org/sites/all/modules/rename_admin_paths/rename_admin_paths.module).
Export 160 results:
[ Autor(Desc)] Titel Typ Jahr
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K
Kortenkamp, U. (2004).  Experimental mathematics and proofs – what is secure mathematical knowledge?. Zentralblatt für Didaktik der Mathematik. 36, 61–66.PDF icon Kortenkamp-EMPWSMK-2004a.pdf (228.83 KB)
Kortenkamp, U. (2007).  Combining CAS and DGS – Towards Algorithmic Thinking. (Li, S., Wang D., & Zhang J-Z., Ed.).Symbolic Computation and Education. 150-173.
Kortenkamp, U. H., & Richter-Gebert J. (1999).  Dynamic Geometry II: Applications. Abstracts 15th European Workshop Comput. Geom.. 109–111.
Kortenkamp, U., & Blessing A. M. (2011).  VideoClipQuests as an E-Learning Pattern. (Kohls, C., & Wedekind J., Ed.).Investigations on E-Learning Patterns: Context Factors, Problems, and Solutions. 237-248.
Kortenkamp, U. (2011).  Interoperable Interactive Geometry for Europe. The Electronic Journal of Mathematics and Technology. 5,
Kortenkamp, U., & Richter-Gebert J. (2004).  Using Automatic Theorem Proving to Improve the Usability of Geometry Software. (Libbrecht, P., Ed.).Proceedings of MathUI 2004. PDF icon KortenkampRichter-Ge-UATPIUGS-2004a.pdf (842.28 KB)
Kortenkamp, U., & Müller W. (2008).  Wo ist denn hier das Undo?. Online Tutoring Journal. 3, PDF icon KortenkampMüller-WIDHDU-2008a.pdf (317.17 KB)
Kortenkamp, U. (2001).  Dynamische Geometrie. Mitteilungen der DMV. 3, 33–40.
Kortenkamp, U. (2006).  Terme erklimmen. Klammergebirge als Strukturierungshilfe. mathematik lehren. 136, 13.
Kuzle, A. (Submitted).  Problem solving as an instructional method: The case of strategy-open problem “The treasure island problem”. LUMAT – Research and Practice in Math, Science and Technology Education.
Kuzle, A., & Artigue M. (2012).  Characterization of preservice teachers’ patterns of metacognitive behavior and the use of Geometer’s Sketchpad. The didactics of mathematics: Approaches and issues. A Hommage to Michèle Artigue.
Kuzle, A. (Submitted).  Unpacking the nature of problem solving processes in a dynamic geometry environment: Different technological effects. Journal für Mathematik-Didaktik.
Kuzle, A. (2012).  Investigating and communicating technology mathematics problem solving experience of two preservice teachers. Acta Didactica Napocensia. 5(1), 1–10.
Kuzle, A. (Submitted).  Nature of metacognition in a dynamic geometry environment. LUMAT – Research and Practice in Math, Science and Technology Education.
Kuzle, A. (2013).  Patterns of metacognitive behavior during mathematics problem-solving in a dynamic geometry environment. International Electronic Journal of Mathematics Education. 8(1), 20–40.
Kuzle, A. (2011).  Preservice teachers’ patterns of metacognitive behavior during mathematics problem solving in a dynamic geometry environment.
Kuzle, A., Pavlekovic M., Kolar-Begovic Z.., & Kolar-Super R.. (2013).  The interrelations of the cognitive, and metacognitive factors with the affective factors during problem solving. Mathematics teaching for the future . 250–260.
Kuzle, A., & Dohrmann C. (2014).  Unpacking Children's Angle "Grundvorstellungen”: The Case of Distance “Grundvorstellung” of 1° Angle. (Liljedahl, P., & Sinclare N., Ed.).PME 38. PDF icon RR_Kuzle-Dohrmann-submitted.pdf (683.57 KB)
Kuzle, A. (2012).  Preservice teachers’ patterns of metacognitive behavior during mathematics problem solving in a dynamic geometry environment. (Ludwig, M., & Kleine M., Ed.).46. Jahrestagung der Gesellschaft für Didaktik der Mathematik. 2, 513–516.
L
Ladel, S., & Kortenkamp U. (2009).  Realisations of MERS (Multiple Extern Representations) and MELRS (Multiple Equivalent Linked Representations) in Elementary Mathematics Software. (Durand-Guerrier, V., Soury-Lavergne S., & Arzarello F., Ed.).Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education. January 28th - February 1st 2009, Lyon (France). PDF icon LadelKortenkamp-RMMERMMELREMS-2009a.pdf (355.73 KB)
Ladel, S., & Kortenkamp U. (2013).  Designing a technology based learning environment for place value using artifact-centric activity theory. (Lindmeier, A. M., & Heinze A., Ed.).Proceedings of the 37th conference of the International Group for the Psychology of Mathematics Education. Mathematics learning across the life span. 1, 188-192.PDF icon LadelKortenkamp-DTBLE-RF4pme37-2013.pdf (81.92 KB)
Ladel, S., & Kortenkamp U. (2012).  Early maths with multi-touch – an activity-theoretic approach. Proceedings of POEM 2012. PDF icon LadelKortenkamp-EMWMAA-2012a.pdf (1.91 MB)
Ladel, S., & Kortenkamp U. (Submitted).  Number concepts –- processes of internalization and externalization by the use of multi-touch technology Silke Ladel and Ulrich Kortenkamp. Early Mathematics Learning.
Ladel, S., & Kortenkamp U. (2011).  Finger-Symbol-Sets and Multi-Touch for a better understanding of numbers and operations. Proceedings of CERME 7, Rzeszow. PDF icon LadelKortenkamp-FMBUNO-2011a.pdf (598.13 KB)
Ladel, S., & Kortenkamp U. (2009).  Virtuell-enaktives Arbeiten mit der „Kraft der Fünf''. MNUprimar. PDF icon LadelKortenkamp-VAGKF-2009a.pdf (722.46 KB)

Seiten

Go to top