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Abstract: 

This paper aims at analyzing the use of computers when teaching differentiability and 

continuity in real-valued function. The relation is approached in the case of a non-

differentiable continuous function in the interval of real line. This example is found in an 

article written by David Tall and is used to evidence a way in which a computer helps the 

learning and teaching of concepts of Differential and Integral Calculus when didactic and 

meaningful materials are produced. Elements of Tall’s theory on the advantages of the use 

of computers in Education, as well as the historical importance of the development of an 

example of a continuous non-differentiable function are presented in this paper. Also, a 

case of a function defined as limit to a series of functions is explored. In addition, 

commands and tools which are available in the software GeoGebra are presented. As a 

result, we present tools which will hopefully contribute to the practice as well as 

advancements in Mathematics Education at Higher Education level. 
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1. Introduction 

This paper aims at analyzing the use of computers when teaching differentiability 

and continuity in real-valued function, and more than that, the relation between these two 

concepts.  In order to do this, we have explored an example presented by Tall, with the aid 

of software, which hoped to indicate the advantages of the use of the computer when 

teaching Differential and Integral Calculus.   

We have developed some elements of Tall’s theory on the use of computers in 

teaching and we have highlighted the historical importance to the development of 

Mathematics with the building an example of a continuous non-differentiable function. The 

example we dealt with is a function defined as limit in a series of functions. We have 



 

 

indicated the commands and tools available in the GeoGebra software which were used to 

build this function, which was named, by the English researcher, the “blancmange function”
1
 

because of its virtue of graphical representation of partial sums of a series.  

The choice of this example was made because it is contrary to the student’s 

intuition and reinforces that the reciprocal of the following theorem is not valid: If a 

function defined in a real open interval is differentiable at a point of this interval, then it is 

continuous at this point. We have also chosen this example because there is an adequate 

software available to build it.   

The potentiality of the use of computers when teaching advanced Mathematical 

topics is mentioned by Tall: 

 

[…] to use the computer to visualise mathematical concepts in helpful ways in 

calculus and analysis. Imaginative use of graph-plotters and graphic calculators 

has enabled students to cope more meaningfully with concepts such as 

differentiation through the notion of “local straightness”, integration through 

area summation, and solving (first order) differential equations by visually 

building up solution curves with given gradient. During this time I became 

increasingly aware of the limited concept imagery afforded by graph-plotters that 

only draw reasonably smooth graphs given by formulae (TALL, 1993, p. 2,). 

 

According to Tall, the computer, when containing adequate software, may be used 

to “provide images which will help in the development of Calculus and Analysis” 

(Almeida, 2013, p. 114, translated by the authors). 

By using the example of blancmange function, it is possible “to give a refined 

conceptual explanation of continuity and differentiation which are formally correct and 

have a suitable pictorial interpretation” (Tall, 1982, p. 1).  

In Tall’s formulations, the graphic representation of the differential function, when 

enlarged to a determined portion, looks like, locally, a segment of a straight line. 

Afterwards, the researcher formulated the notion of cognitive roots “local straightness”, 

which is based on the perception that tiny part of certain graph under high magnification 

eventually looks virtually straight (Tall, 1989). This notion would be appropriate to the 

development of the concept of derivative because “it allows the gradient function to be 

seen as the changing gradient of the graph itself” (Tall, 2000, p. 11).  

By the notion of local straightness it would be possible to stimulate the student’s 

imagination to conceive how a graphic representation of a continuous and non-

                                                
1
 blancmange function, according to Tall (1982), the term was coined by John Mills. 



 

 

differentiable function at the points of the domain would be. A characteristic of this 

representation would be the following: it should keep the “beak”, not mattering how much 

this function was enlarged. The blancmange function would be an example of this fact, 

because of the way it is defined.  

Another reason related to the example presented in this paper is that, in some 

historical episodes concerning the constitution of the formal concept of continuity, 

mathematicians, from the beginning of the XIX century, conjectured that continuous 

functions had points in which they were differentiable. This way, an example of a 

continuous non-differentiable function in all points of its domain would contradict such 

conjecture. Besides,  

 

[...] a lot of mathematicians believed that continuous functions had derivatives 

with a “meaningful” number of points and some mathematicians tried to give 

theoretical justifications for this fact, such as A. M. Ámpere, in a paper published 

in 1806. However, until the beginning of the 19
th

 Century, the main concepts of 

Calculus did not have adequate logical justification and Ámpere’s paper failed to 

explain, due to the limitations of the definitions back then. In 1872, K. 

Weierstrass published a paper that “shocked” the Mathematics community 

proving that this conjecture was false. More precisely, he built and example of a 

continuous function which was not differentiable at any point.
2
 (Araújo & 

Fávaro, 2009, p. 5, translated by the authors).  

 

Concerning the concepts of continuity and differentiability of a real function, the 

following result is stated: Be f: X  →  and Xx 0 , if f is differentiable in 0x  so f is 

continuous in 0x . The reciprocity of this result is false, because there are continuous 

functions in a determined point of the domain which are not differentiable at this point. In 

general, the counter-example to the reciprocity of the theorem is the absolute value 

function, that is, the real function defined by  f(x) = | x |, in x = 0, it is a continuous function 

in 0, but not differentiable in 0, because 
0

)0()(
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0 



 x

fxf

x

  does not exist. However, it is a 

function in which the differentiability is not guaranteed only at the zero point. On the other 

hand, the blancmange function is a continuous function in all points of the domain, but not 

differentiable in any of those points. Besides being difficult to conceive, it is not 

commonly presented.  
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In order to build such example we have chosen the software, written in Java, of 

Dynamic Geometry, GeoGebra, because it is free, has simple and intuitive interface and 

enables the development of activities which gather Geometry, Algebra and Calculus.  It is 

possible to elaborate and modify applets, either to use in the classroom or to make them 

available on internet websites. This software holds all tools and commands which enable 

the building of the aforementioned function, once it is the limit to a series of functions. 

This way, we intend to show that GeoGebra can be used in the introduction the concepts of 

both Differential and Integral Calculus and the Real Analysis.  

This paper was divided as follows: in the next section, we present the definition of 

“blancmange function”, then, the first term of the series of function, in which the limits 

will be the same as the considered function, besides the tools and commands used while 

building the example; in the fourth section, we show the software tools, which were used 

in the building of terms of sequence and series of functions. Finally, we present the 

considerations related to the graphic representation of the function and indications of the 

way in which the software GeoGebra may be used in teaching and learning Mathematical 

concepts approached in Higher Education.  

2. The definition of the real “blancmange function”  

The “blancmange function”, which will be denoted by b, is a function with domain 

in the closed interval [0,1] and image in the setting of real numbers, defined by the limit of 

the series of functions.  
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In this case, ]1,0[:1f → , is defined by the following sentence }{)(1 xxxf  , 

and {x} denotes the image of the real function {}. In order to define it, we consider the fact 

that if x is a real number, then z  exist, and )1,0[d  so that = z + d. So: 










15,0 se     1

5,00 se          
}{}{

dz

dz
dzx  

Note that to all )1,0[0 x , so dx  00 . Considering this, if 5,00  d  so 

0}{ 0 x , and if 15,0  d  so 1}{ 0 x . This way, to 5,00  d , 



 

 

ddxxxf  0}{)( 0001 , and, to 15,0  d , ddxxxf  11}{)( 0001 . 

Then, it is valid that 5,0)(0 1  xf , to )1,0[x . If 10 x , it is valid that 

0}1{1)1(1 f . So, 5,0)(0 1  xf , to ]1,0[x . 

To the building of the general term of the sequence of functions ]1,0[:nf → , the f 

function will be used, in which the domain and image are sets of real numbers, defined by 

}{)( xxxf  . This way, the general term of this sequence is given by: ]1,0[:nf → , 

with )2(
2

1
)( 1

1
xfxf n

nn  


. 

In the next section, we will present the first term, commands and tools available in 

the GeoGebra software, which may be used to the building of a graphic representation of 

the partial sums of the series, in which the limit is the “blancmange function”.  

3. The building of the “sawtooth function” 

In order to build the “blancmange function” it is necessary, at first, to build a real 

function, which can be called “sawtooth function”. This function is an example of a 

continuous function which is non-differentiable at an infinite number of points. This 

building is necessary, because the first term of a series of functions, in which the limit is 

the “blancmange function”, is the “sawtooth function”, restricted to the interval [0,1]. 

The graphic representation of this function is:  

 
Figure 1 – The graphic representation of the “sawtooth function”.  

Source: The authors.  

 



 

 

In order to build this function by using the GeoGebra software, pre-defined 

functions are necessary. Those are explained in the next paragraphs.  

Firstly, it is necessary to use the pre-defined function round(). According to the 

software manual (Hohenwarter, 2009, p. 37), this command is described as round and does 

the following operation: associates a real number x to the whole number which is closest to 

x. When typing, in the Input Bar, the command round(x), a graph of the real will be 

sketched, given by the following sentence g(x) = {x}. The graphic representation of g 

function will appear in the icon Graphics.  

 
Figure 2 – The graphic representation of the g function, given by the sentence g(x) = {x}. 

Source: the authors. 

 

Proceeding the building of the “sawtooth function”, it is necessary to build an f, 

function, in which the domain and image are real number sets, with the following sentence 

}{)( xxxf  . In order to build it, it is necessary to use, besides the pre-defined round() 

function, the  abs() function, called absolute value, which brings the same definition of the 

absolute value in a real number.   

When using the pre-definite functions, all you have to do is type, in the Input Bar, 

the following: “f(x) = abs(x – round(x))”. As a result, the graphic representation of the 

“sawtooth function” will appear in the icon Graphics, as shown in Figure 1.  

In order to build the first term of sequence of fn function, it is necessary to limit the 

domain of the f function to the interval [0,1]. It is possible to do it in GeoGebra, with the 

boolean command “If”. Following the software manual (Hohenwarter, 2009, p. 41), the 

command brings the following structure:  “If[<Condition>, <Then>]”, and it can be used 

when building a function in which the domain is a subset of real numbers. With the 



 

 

objective of exemplifying the use of this command, consider the function  ]2,2[:h , 

given by the following sentence h(x) = 1
2

3
x . In order to sketch the graphic of this 

function, it is necessary to type the following commands in the Input Bar, “h(x) = If [– 2 ≤ 

x ≤ 2, 1
2

3
x ]”.  

In Figure 3, find the graphic representation of the h function, in the icon Graphics: 

 
Figur3 3 – The graphic representation of the h function: [-2,2] → , given by the sentence 

1
2

3
)(  xxh

, in the 

icon Graphics. 

Source: the authors 

 

To indicate the alteration of the domain of the function, the following is exhibited 

in the icon Algebra (Figure 4): 

 
Figure 4 – The function representation h: [-2,2] → , given by the sentence 

1
2

3
)(  xxh

, in the icon Algebra. 

Source: the authors. 

 

Returning to the construction of the first term of the sequence of the fn functions, it 

will be necessary to type the following in the Input Bar:  

“f_1(x) = Se[0 ≤ x ≤ 1, abs(x – round(x))]” 



 

 

In Figure 5, it is possible to see the graphic representation of the first term of the 

sequence of functions, in which the limit is the same as the “blancmange function”:   

 
Figur5 – The representation of the function  f1: [0,1] → , given by the sentence }{)(1 xxxf  . 

Source: the authors. 

 

In the next session, we will present other tools of the software which are used to 

build the general term of the sequence of functions and the series of functions.  

4. The construction of the “blancmange function”. 

In this paper we propose the building of the “blancmange function”, with the 

domain in the closed interval [0,1], and the image is the set of real numbers. It is defined as 

the limit of the following series of functions:  
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It is continuous at all points of the interval [0,1] and non-differentiable in [0,1].  

In such building, other tools available in GeoGebra are used. These tools can be 

used to explore sequence of functions and series, which are commonly presented in a 

course of Analysis. Initially, it is shown how it is possible to represent a quantity of terms 

of sequences in functions in the software, and after, a partial add in a series of function.  

If X is a set of real numbers, a sequence of functions Xfi :   is a sequence 

(function defined in the set of Natural numbers) which takes in the set of defined functions 



 

 

in X to real values. For example, consider the sequence of functions ]1,0[:ig  , defined 

by i

i xixxg )1()(   (i = 1, 2, 3, ...).  

It is possible to represent a sequence of functions in GeoGebra, by means of the 

command “Sequence”. According to the software manual  (Hohenwarter, 2009, pp. 60 – 

61), in order to use it, it is necessary to type the following in the Input Bar: 

“Sequence[<Expression>, <Variable>, <Start Value>, <End Value>]”, such command 

provides the list of objects created using the “Expression” given, according to the 

“Variable” , determined by the user and that must be part of the “Expression” which was 

typed, which varies from the “Start Value” up to the “End Value”.  

In order to build the terms of the sequence of functions Niig )( , it is necessary to 

type the following commands, in the Input Bar:  

“Sequence[Se[0 ≤ x ≤ 1, i
*
x

*
(1 – x)^i] , i, 1, 30]” 

As a result, the thirty first terms of the sequence of functions ]1,0[:ig   were 

represented in the icon Graphics. (Figure 6)  

 
Figure 6 – The representation of the thirty first terms of the function gi: [0,1] → , being i

i xixxg )1()(  . 

Source: the authors. 

 

With the help of the representation of terms of the functions it is possible to infer 

that Nnng )(  converges punctually to the function identically zero.  

Another way to implement a sequence is using the slider tool, available in 

GeoGebra. According to the software manual (Hohenwarter, 2009, pp. 24 – 25), a slider is 

the graphic representation of a parameter, with can be number (whole or not) or an angle, 

and when modified produces determined alteration in the element associated to the 

parameter. This tool can be used to build a representation in terms of a sequence. Consider 



 

 

a sequence of functions which is built, previously exposed, typing the following commands 

in the Input Bar: “Sequence[Se[0 ≤ x ≤ 1, i
*
x

*
(1 – x)^i] , i, 1, 30]” 

Now, when clicking in the tool, which the icon is , a dialog box will open with 

some options. Firstly, a name to the “Slider” should be given. In our case the name given 

was “n”. The option “Integer” was selected and in the icon “Interval”, the maximum and 

minimum values of the parameters must appear. For instance, the minimum value 

attributed was 1 and the maximum 30 (Figure 7). 

 
Figure 7 – The dialog box used to build the “Slider” 

Source: the authors. 

When the “Slider” is ready, the following should be typed in the Input Bar: 

“Sequence[Se[0 ≤ x ≤ 1, i
*
x

*
(1 – x)^i] , i, 1, n]” 

The first n terms in the sequence of functions 
Nnng )( are exhibited when we move 

the slider control in the “Graphics” in GeoGebra.  

In order to build a sequence of functions, which will result in a series of functions, 

in which the limit is the same of the “blancmange function”, all the objects and functions 

built previously are used. Because of this, the following commands should be typed in the 

Input Bar:  

“Sequence[If[0 ≤ x ≤ 1,(f(2^(j - 1)*x)) / (2^(j - 1))], j, 1, n]” 

At this moment, elements of the command “if” will be commented. This command 

was used to determine: the domain of the functions which compose the sequence, that is, 

the interval [0,1], the part (f(2^(j - 1)*x)) / (2^(j - 1)) represents the following function 

]1,0[:nf → , given by the sentence )2(
2

1
)( 1

1
xfxf n

nn  


, being f the real function 

given by the following sentence }{)( xxxf  3
. In this part, the typed command is in 

function of j, because this variable is necessary to the command “Sequence”. The numeral 
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 Note that this function is built with the inclusion of the following commands in the Input Bar:                             

“f(x) = abs(x – round(x))”. Observe that, for the command to make sense, it is necessary that this function be 

built in the same file. 



 

 

1 is the minimum value of the sequence and the maximum value is n, which is the “slide 

control”, created previously. The 10 first terms of the sequence of functions 
Nnnf )( are 

represented in Figure 8:  

 
Figure 8 – The tem first terms of the sequence Nnnf )( . 

Source: the authors. 

The built sequence is named lista1. A list, to GeoGebra, is a group of objects 

created by the user. In this case, the lista1 is a list with the first n terms of the sequence of 

functions. The software has commands which can order, compare, add elements and 

operate with elements belonging to a list (Hohenwarter, 2009, p. 58). Our objective is to 

build a graphic representation of the partial sum of the series of functions,  





n

i

in xfxb
1

)()( , being fi previously defined. 

In order to partially sum the functions fi you only need to use the command 

“Sum[<list>]”, because it sums all the elements of a certain list. This way, you only need 

to type, in the Input Bar, the following: “Sum[lista1]” 

As a result, in the icon “Graphics”, the result of the partial sum in the series of 

function is exhibited. The partial sum 


30

1

)(
i

i xf
, as 

Nnnf )(  is the sequence of built 

functions in this session, and is represented in Figure 9. 



 

 

 

Figure 9 – The representation of the partial sum 


30

1

)(
i

i xf , as 
Nnnf )(  is the sequence of built functions in 

this session.  

Source: the authors. 

5. Final remarks 

In this paper, we have exposed a representation of a continuous function at all 

points of the domain, and non-differentiable at any. This function was approached in Tall 

(1993; 2000).  

According to Tall (1993, p. 11), one of the objectives of using this example and the 

introduction of notion of cognitive root of local straightness is the possibility of stimulating 

the imagination of the student to conceive how the graphic representation of a continuous 

non-differentiable function at the points of the domain would be. In this perspective, the 

graphic representation of this function should remain with ‘beaks”, not mattering how 

much this function was enlarged.  

However, it is evident that the representation, itself, does not guarantee that the 

“blancmange function” is continuous and non-differentiable at all points of the domain. If 

the reader was interested in verifying the reason why the presented function brings the 

aforementioned characteristics, we suggest the following references: Tall (1982) and                 



 

 

Thim (2003). In Araújo e Fávaro (2009), we can find another example of a continuous 

non-differentiable function, developed by the Mathematician B. van der Waerden, in 1930.  

In Lima (2009), we found an indication that the set of continuous functions     

If :  , which do not have derivate at any point of the interval I, “in a natural sense, 

brings ‘the majority’ of continuous functions If :  ” (Lima, 2009, p. 195, translated by 

the authors), which seems to be a very surprising fact.  

Another point, it was to exhibit tools, commands and predefined functions which 

are available in the GeoGebra software. Those enable the teacher to elaborate meaningful 

didactic materials, which can be used to teaching and learning the concepts approached in 

Higher Education, mainly in the teaching of Differential and Integral Calculus and Real 

Analysis.  

Finally, it is expected that both the built example and the presented tools might help 

in future field researches and foment discussions that will contribute to the advance of 

Mathematics Education at Higher Education.  
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