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Quantifier Elimination is a procedure that allows to simplify 

logical formulas that contain quantifiers. Many mathematical 

concepts are defined in terms of quantifiers and especially in 

calculus their use has been identified as an obstacle in the 

learning process. The automatic deduction provided by 

quantifier elimination thus allows students to exercise the 

formulation of concepts using quantifiers. This may be seen as 

conceptual modelling. 

 

1 INTRODUCTION 
Tarski has shown that formulas of first order predicate 

logic over certain fields can be decided algorithmically and 

algorithmic progress, especially the method of algebraic 

cylindrical decomposition. Tarski himself noted that this leads 

to a decision procedure for elementary geometry as well. 

Furthermore, it gives a systematic way to solve systems of 

polynomial inequalities over ℝ. Many notions from calculus 

that are expressed in terms of quantifiers can be formalized 

and decided for purely algebraic functions. This shows that the 

method of quantifier elimination is suited for several classes 

of problems that are relevant in math education at various 

levels. Thus the question arises, whether this method can be 

used as a teaching tool. One may hope that having access to 

quantifier elimination in a computer algebra system may give 

students the opportunity to explore the mentioned fields of 

application. Especially one may hope that this may provide a 

playground to exercise the formalisation step in mathematics. 

E.g. one may have an intuitive idea of what it means for a 

function to be convex on an interval but it is a crucial further 

step to be able to formalize this in the language of predicate 

calculus. We give examples of all kinds of didactically 

relevant applications and especially example on the 

formalizations of notions. Based on this example set we 

systematize the potential and the inherent problems of 

quantifier elimination as a teaching method. 

 

2 QUANTIFIER ELIMINATION 

Universal and existence quantifiers are the basic tools of 

predicate logic and they allow expressing many mathematical 

statements. In general, the truth of statements in unrestricted 

predicate logic is undecidable. However, Tarski's ingenious 

contribution is to identify a very strong subset that can indeed 

be decided. The domain of variables in this theory is the set of 

real numbers, quantifiers are first order (i.e. they concern 

variables for numbers not for functional symbols), 

propositional logic expressions (conjunction, disjunction, 

negation, implication), relations <, =, > among numbers and 

polynomials in the variables.  The restriction to polynomials 

is not severe. In fact, the implementation in Maxima (Honda 

2014) pre-processes e.g. rational equations as follows: 

 

. Square roots and absolute values can be treated as well: 𝑎 =

√𝑏 ⇔ 𝑎2 = 𝑏 ∧ 𝑎 ≥ 0, 𝑎 = |𝑏| ⇔ 𝑎2 = 𝑏2 ∧ 𝑎 ≥ 0but this 

is not yet implemented in the current version of qepmax. 

For this language, Tarski has shown that form all such 

formulas quantifiers can be eliminated and this provides 

algorithmic proving of statements in this language. E.g. 

eliminating the quantifier from ∀𝑥(𝑥 + 1)2 = 𝑥2 + 2𝑥 +
1 gives true. This is trivial, so let's look at a more interesting 

example: For which values of the parameter c does the 

function f(x)=x3-cx2+cx+c have at least two distinct real 

roots? The statement to decide is ∃𝑥1: ∃𝑥2: 𝑥1 ≠ 𝑥2 ∧ 𝑓(𝑥1) =
0 ∧ 𝑓(𝑥2) = 0. Eliminating quantifiers from this gives a 

condition on c, namely c-1 or c 27/5, that precisely 

describes all values for which there are at least two roots. The 

calculation carried out in the computer algebra system 

Maxima using the qepmax library is shown below in Fig. 1. 

Application areas of quantifier elimination are wider than 

proving algebraic identities as many problems can be 

translated into algebraic-logical language. This includes 

proving theorems in elementary geometry and exact solution 

of (possibly constrained) optimization problems.   

Figure 1: Performing quantifier elimination in Maxima 

 

As most notions of calculus like limit, continuity, convexity, 

differentiability are defined in terms of quantifiers, one can 

use quantifier elimination to make these notions computable 

at least for a restricted set of functions defined by algebraic 

expressions. 

This paper will investigate the scope of an approach to 

concepts of calculus based on this method. 

 

 

3 APPLICATIONS IN CALCULUS 

The need to work with quantifiers has been identified as one 

of the key obstacles in learning calculus (e.g. Roh 2009 and 

Durand-Guerrier et al. 2012). Working with a computer 

algebra system that supports quantifier elimination allows 

students to formalize notions and then test if the formal 

expression they gave really gives the behaviour they intended. 

The quantifier elimination methods thus gives them quick 

response that is guaranteed to be formally correct. 

We view this whole process as a special case of modelling 

(Niss et al. 2007). Students may have developed e.g. from 

looking at examples an intuitive notion, a concept image 

(Tall&Vinner 1981). Now, this informal notion is formalized 

to become a sound logical formula. Finally, this is translated 

into the syntax of the computer algebra system and can then 

be applied. Interpretations of results may make it necessary to 

refine the definition so that it meets the concept image that 

should be modelled – or it may lead to the insight that the 

informal concept image is not well formed and should be 

altered. The following diagram (Fig. 2) shows a modelling 

circle (Niss et al. 2007) applied to the concept of global 
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minimum. In this example the informal concept image might 

first have the property the minimum is unique which is not 

encoded in the formal definition as the example shows. This 

might either lead to modify the informal or the formal 

definition or it might lead to introduce two notions. 

  
Figure 2: Modelling circle for modelling concepts within a 

formal system 

 

 
Figure 3. Some test functions 

 
Figure 4: Global minima (# in Maxima means 'not equal'. 

Anonymous functions are defined in Maxima using the 

lambda function constructor) 

 

Local minima are an even richer field for exploration. The 

absolute value function that is needed to describe distances is 

not available in the current implementation of qepcad so that 

one needs to express |𝑥| < 𝑦as 𝑥2 < 𝑦2 ∧ 𝑦 ≥ 0and similar 

for other uses (probably this may require to introduce new 

variables). 

 
Figure 5: Formalizing local minima. 

 

Up to now, all variables in the formulae where bound by 

quantifiers. Thus eliminating them yielded either false or true 

as result. Variables that are not bound by quantifiers are in a 

sense much more interesting, as they allow the method to 

calculate conditions on them to make the statement true as the 

next example shows: 

 
Figure 6: Leaving variables free often produces interesting 

results! 

 

Next, we consider the notion of continuity. The techniques to 

translate the standard formalization are similar to the examples 

above so we hope that the screen shots speak for themselves. 

Figure 7: Translating absolute value conditions to squares is 

a bit clumsy but works as expected. Especially, the method 

can detect where rational functions are not continuous. 

 

Besides rational function there are no examples where the 

question of continuity is interesting in the range of functions 

that can be applied. However, using a simple trick one can 

encode piecewise defined functions by logical propositions by 

means of the equivalence: 

𝑓(𝑥) = {
𝑓1(𝑥)𝑖𝑓𝑥 < 𝑥0

𝑓2(𝑥)𝑖𝑓𝑥 ≥ 𝑥0
} ∧ 𝑦 = 𝑓(𝑥) ⇔ 

(𝑥 < 𝑥0 ⇒ 𝑦 = 𝑓1(𝑥)) ∧ (𝑥 ≥ 𝑥0 ⇒ 𝑦 = 𝑓2(𝑥)) 

This requires rewriting functions in a relational way. By 

convention, we use the name for functions represented in that 

way, the square function e.g. is encoded as. With this bag of 

tricks piecewise defined functions can be handled. 

 
Figure 8: Piecewise defined functions and the test for 

continuity 

 

The same considerations apply for testing differentiability. 

However, it turns out that proving the differentiability of 

piecewise defined functions would take too much memory to 

be handled by Maxima on standard computers and maybe out 

of the reach as the complexity of the quantifier elimination 

algorithm can be very time consuming (e.g. double 

exponential in the number of variables). However, the 

implementation of quantifier elimination in Mathematica can 

handle this example. 
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Figure 9: Maxima proving that the derivative of 𝑓(𝑥) = 𝑥2at 

2 is 4. It fails however, to establish differentiability of a 

piecewise defined function.   

 
Figure 10: Mathematica can determine the derivative (see 

cell In[8]) for which Maxima (Fig. 9) failed 

 

Next, we consider two notions that are linked to calculus 

without involving limits: monotone and convex functions. 

 

 
Figure 11: Functions that are strictly monotone in an interval. 

Obvious variations are non-strict versions. 

 

 

 
Figure 13: Checking if is an inflection point of𝑓(𝑥) = 𝑥(𝑥 −
1)(𝑥 − 2) in the interval [-5,5]. Note that if is not from this 

interval no statement is made, so it is not false 

 

4 THE PITFALLS 

  

The last section has shown some glimpses of the power of the 

method of quantifier elimination. The most important is that it 

is a correct method so that students get results they can trust it 

(unless the computing time or memory usage becomes to high 

to be acceptable). This is a crucial point. In 

Oldenburg&Weygandt (2015) and we showed how much 

wrong or incomplete answers from computing limits within a 

computer algebra system can irritate students. However, this 

correctness comes at a price: The set of test functions is 

restricted to the algebraic class described above, so that all 

transcendental functions like exponentials, logarithms and 

trigonometric functions as well as special functions that are of 

interests e.g. for physicists (Airy, Bessel, ...) are out of the 

reach of the method. Piecewise defined functions have to be 

handled in way that is not very user friendly (although this 

drawback might be overcome by smoother interfaces to the 

core method). In its direct incarnation of the method not even 

rational functions can be handled which leads the students 

with a set of functions that includes only continuous and 

differentiable ones. The Maxima implementation is thus an 

important step from a didactical perspective. 

Another drawback is the vast computing power to carry out 

the methods – and that is increases very fast with the 

complexity of the problem. One may say that from the 

perspective of a trained mathematician the method is only up 

to toy problems.     

 

5 BALANCING GAINS AND PITFALLS 

 

Often the claim is made that the most advanced 

mathematics and most sophisticated implementation is not 

needed for education as students deal with elementary 

concepts. Quantifier elimination is certainly an exception to 

this. Only now the implementations get so fast and reliable that 

the method can provide a safe and reliable 'playground' for 

working with quantifiers. We expect the method to become in 

more widespread use in the next years as it gains momentum 

from several directions including exact optimization and 

automated theorem proving in geometry. This will hopefully 

increase the use in education as well and will provide 

empirical evidence to give a judgement if he gains outweigh 

the pitfalls.

Figure 12: Convexity detection without using second 

derivative 

 

A question that pushes the complexity of logical combinations 

to the limit of the system (and maybe the user) is to express 

that a point is an inflection point of a function in the sense that 

the function is convex on one side and concave on the other. 
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