Introduction: a harvesting model in population dynamics

Model: $x^{\prime}(t)=\mu x(t)(K-x(t))-h$, where μ is the growth rate, K is the carrying capacity, h is the harvesting rate.

Fix the parameters $\mu=0.5$ and $K=1.5$, then some snapshots:

Observe: the structure of the solutions may be different with changing of parameter!

Concepts of bifurcation theory

Definition: A bifurcation appears at α_{0} in a parameter-dependent system, if the dynamics of the system changes qualitatively when the parameter is passing through α_{0}.
Remark: This phenomenon appears in many real life problems!
Goal: find simple models (=normal forms) for bifurcations, which can be studied with elementary tools and represents the family of models, where the bifurcation can occur.

Difficulties in education

- Models are quite complicated; problem with finding of the simple models;
- finding of the parameter, which causes structural changes;
- mathematical study of more-parameter bifurcation is a hard challenge
- deep mathematical theories are required, even in the simplest cases.

Didactic main points

- Mathematical knowledge vs. necessity: students should investigate this phenomenon, but don't know the necessary theory;
- dealing with simple models representing bifurcations;
- avoiding deep theories;
- dynamic visualization.

Advantages of Wolfram Mathematica

- Advanced visualization tools (StreamPlot, ParametricPlot,...);
- advanced tools to study parameter-dependent systems: ParametricNDSolve;
- dynamic modules help exploring the bifurcations (Manipulate).

Saddle-node bifurcation in system $x^{\prime}(t)=\alpha+x^{2}(t)$

- Equilibria: $\bar{x}= \pm \sqrt{-\alpha}$ (don't exist always!)

[^0]Pitchfork bifurcation in system $x^{\prime}(t)=\alpha x-x^{3}(t)$

- Equilibria: $\bar{x}=0$ (always exists), $\bar{x}= \pm \sqrt{\alpha}$

- Bifurcation diagram: - Bistability occurs in biological systems $=$ hys-
 teretic systems.
- Remark: for saddle-node bifurcation there are unbounded solutions vs. for pitchfork bifurcation all solution converges \Rightarrow at the computeraided study of saddle-node bifurcation we should be more careful!

Bifurcation in a two-dimensional system: Hopf-bifurcation

- Normal form:

$$
\begin{aligned}
& x^{\prime}(t)=\alpha x(t)+y(t)-x(t)\left(x^{2}(t)+y^{2}(t)\right) \\
& y^{\prime}(t)=-x(t)+\alpha y(t)-y(t)\left(x^{2}(t)+y^{2}(t)\right)
\end{aligned}
$$

- New object: periodic solution! Some snapshots in phase space:

- The system after a polar transformation:

$$
\begin{aligned}
r^{\prime}(t) & =r(t)\left(\alpha-r^{2}(t)\right) \\
\varphi^{\prime}(t) & =1
\end{aligned}
$$

- Closed curves (=periodic solutions) in phase space: circles with radius $\sqrt{\alpha}$ and centre $(0,0)$.
- A bifurcation diagram: - Important phenomenon vs. low-level of knowl-
 edge about higher dimensional mathematics (differential geometry, multivariable analysis).
- Remark for engineers: in the industry it may be catastrophic, if the behavior of a machine produces a Hopf-like transition.

References

[1] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos,2nd ed. (2003)
[2] Kuznetsov Y., Elements of Applied Bifurcation Theory, 3rd ed. (2004)
[3] Karsai J., Computer-aided study of mathematical models with Mathematica (2013)
[4] Vas G., Bifurcation theory (lecture notes) (2014)
[5] Wiens E.G., Bifurcations and Two Dimensional Flows (webpage) http://www.egwald.ca/nonlineardynamics/bifurcations.php
[6] Guckenheimer J., Bifurcation (webpage), doi:10.4249/scholarpedia. 1517

Acknowledgments

Research is supported by the Hungarian National Foundation for Scientific Research Grant No.K109782, and by the European Union in the frame of the projects IPA HU-SRB/1203/221/024 TMOP-4.2.2.A-11/1/KONV-2012-0073.

Contact Information

- Web: http://www.model.u-szeged.hu
- Email: zsvizi@math.u-szeged.hu, karsai.janos@math.u-szeged.hu

The project is co-financed by the European Union

[^0]: - Bifurcation diagram: - Remark: in the pre- Interpretation: disvious harvesting model a saddle-node bifurcation appears at $h=$ $\frac{K^{2} \mu}{4} \Rightarrow$ the system can be transformed to the form $x^{\prime}=\alpha-x^{2}$. appearance of stable equilibrium = sudden extinction of the population \Rightarrow only controlled harvesting is allowed to do!

