

Visual introduction to bifurcations

Zsolt Vizi*, János Karsai Bolyai Institute, University of Szeged

Introduction: a harvesting model in population dynamics

Model: $x'(t) = \mu x(t) (K - x(t)) - h$, where μ is the growth rate, K is the carrying capacity, h is the harvesting rate.

Pitchfork bifurcation in system $x'(t) = \alpha x - x^3(t)$

► Equilibria: $\overline{x} = 0$ (always exists), $\overline{x} = \pm \sqrt{\alpha}$

- ► Bifurcation diagram:
 - \blacktriangleright Bistability occurs in biological systems = hysteretic systems.
 - Remark: for saddle-node bifurcation there are unbounded solutions vs. for pitchfork bifurcation all solution converges \Rightarrow at the computeraided study of saddle-node bifurcation we should be more careful!

Fix the parameters $\mu = 0.5$ and K = 1.5, then some snapshots:

Observe: the structure of the solutions may be different with changing of parameter!

Concepts of bifurcation theory

Definition: A bifurcation appears at α_0 in a parameter-dependent system, if the dynamics of the system changes qualitatively when the parameter is passing through α_0 .

Remark: This phenomenon appears in many real life problems!

Goal: find simple models (=normal forms) for bifurcations, which can be studied with elementary tools and represents the family of models, where the bifurcation can occur.

Difficulties in education

Bifurcation in a two-dimensional system: Hopf-bifurcation

Normal form:

- $x'(t) = \alpha x(t) + y(t) x(t) (x^{2}(t) + y^{2}(t))$ $y'(t) = -x(t) + \alpha y(t) - y(t) (x^{2}(t) + y^{2}(t))$
- New object: periodic solution! Some snapshots in phase space:

► The system after a polar transformation:

 $r'(t) = r(t)(\alpha - r^2(t))$ $\varphi'(t) = 1$

- \blacktriangleright Closed curves (=periodic solutions) in phase space: circles with radius $\sqrt{\alpha}$ and centre (0, 0).
- ► A bifurcation diagram: ► Important phenomenon vs. low-level of knowledge about higher dimensional mathematics (differential geometry, multivariable analysis). Remark for engineers: in the industry it may be catastrophic, if the behavior of a machine produces a Hopf-like transition.
- Models are quite complicated; problem with finding of the simple models;
- finding of the parameter, which causes structural changes;
- mathematical study of more-parameter bifurcation is a hard challenge;
- deep mathematical theories are required, even in the simplest cases.

References

- [1] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed. (2003)
- [2] Kuznetsov Y., Elements of Applied Bifurcation Theory, 3rd ed. (2004)
- [3] Karsai J., Computer-aided study of mathematical models with Mathematica (2013)
- [4] Vas G., Bifurcation theory (lecture notes) (2014)
- [5] Wiens E.G., Bifurcations and Two Dimensional Flows (webpage) http://www.egwald.ca/nonlineardynamics/bifurcations.php

[6] Guckenheimer J., Bifurcation (webpage), doi:10.4249/scholarpedia.1517

Didactic main points

- Mathematical knowledge vs. necessity: students should investigate this phenomenon, but don't know the necessary theory;
- dealing with simple models representing bifurcations;
- avoiding deep theories;
- dynamic visualization.

Advantages of Wolfram Mathematica

- Advanced visualization tools (StreamPlot, ParametricPlot,...);
- advanced tools to study parameter-dependent systems: ParametricNDSolve;
- dynamic modules help exploring the bifurcations (Manipulate).

Saddle-node bifurcation in system $x'(t) = \alpha + x^2(t)$

► Bifurcation diagram:

 \blacktriangleright Remark: in the pre- \blacktriangleright Interpretation: disvious harvesting model appearance of stable a saddle-node bifurcaequilibrium = **sudden** extinction of the poption appears at h = $\frac{K^2\mu}{\Lambda} \Rightarrow$ the system can ulation \Rightarrow only controlled harvesting is albe transformed to the form $x' = \alpha - x^2$. lowed to do!

Acknowledgments

Research is supported by the Hungarian National Foundation for Scientific Research Grant No.K109782, and by the European Union in the frame of the projects IPA HU-SRB/1203/221/024 TMOP-4.2.2.A-11/1/KONV-2012-0073.

Contact Information

- Web: http://www.model.u-szeged.hu
- Email: zsvizi@math.u-szeged.hu, karsai.janos@math.u-szeged.hu

