
ZDM 2004 Vol. 36 (2) Analyses

61

Experimental Mathematics and Proofs
in the Classroom

Ulrich Kortenkamp, Berlin

Abstract: Experimental mathematics is a serious branch of
mathematics that starts gaining attention both in mathematics
education and research. We give examples of using experimen-
tal techniques (not only) in the classroom. At first sight it seems
that introducing experiments will weaken the formal rules and
the abstractness of mathematics that are considered a valuable
contribution to education as a whole. By putting proof and
experiment side by side we show how this can be avoided. We
also highlight consequences of experimentation for educational
computer software.

Kurzreferat: Experimentelle Mathematik hat sich zu einem
ernst zu nehmenden Teil der mathematischen Forschung und
Ausbildung entwickelt, der immer mehr Beachtung findet. Wir
geben Beispiele, wie solche experimentellen Techniken nicht
nur, aber auch im Unterricht eingesetzt werden können. Zu-
nächst scheint es so, als würden Experimente die formalen
Regeln und Abstraktionen der Mathematik schwächen, die ein
eigentliches Ziel des Mathematikunterrichts darstellen. Im
Vergleich von Beweis und Experiment stellen wir dar, wie diese
Schwächung vermieden werden kann. Weiterhin betonen wir
die Auswirkungen dieser Methoden auf Lern- und Lehrsoft-
ware.

ZDM-Classifikation: G90, N70, N90, U70

1 Experimental Mathematics

For centuries Mathematics has been known as a kind of
science that is independent of empirical observations.
Mathematicians can work at any place, with or without
tools, creating abstract worlds of their own in their mind
only. However, when a mathematician fixes an axiomatic
frame for her1 studies this leads inevitably to a set of rules
that may be considered “laws of nature” for these worlds
that cannot be broken. Thus it is feasible to ask for possi-
ble ways of performing experiments in these worlds that
exhibit coherences for further investigation and deeper
understanding.

Exploring these worlds experimentally has become part
of mathematical science, as we can see by the creation of
institutions like the Centre of Experimental and Compu-
tational Mathematics2 at Simon Fraser University,
Burnaby, Canada, or the Institut für Experimentelle
Mathematik in Essen3. Their common theme is that they
ask for systematic ways of creating experiments that will
help in investigating a certain problem. This enabled
them to solve long-standing questions, and you can find
many examples like the discovery of the BBP formula in

1 Whenever we use the words „his“ or „her“ you can try to
replace them by „her“ or „his.“ If the sentence still makes sense,
we meant to include both.
2 http://www.cecm.sfu.ca
3 http://www.exp-math.uni-essen.de

the literature, for example in the surveys of Jonathan
Borwein (2003).

It is not surprising that it is a rather new trend to use
simulations, massive brute-force calculations, or visuali-
zation for mathematics, as the necessary technical im-
provements in computer science are recent. Today it is
easily possible to quickly check a formula for several
million random values, or to compare an integer sequence
against a database of several ten thousands of examples
(Sloane). For further details of successful applications of
computers and the next major steps to expect we again
refer to the overviews of Borwein.

In mathematics education it is now common to use ex-
perimental setups for teaching (instead of giving single
references, we just mention the series of the proceedings
of the workshops of the Arbeitskreis Mathematikunter-
richt und Informatik der GDM), as is the use of comput-
ers. Still we claim that the conception of most of the
experiments done in the classroom and the ones done in
research is fundamentally different. At first glance, dis-
covery activities seem to be experimental activities from
the viewpoint of a student, but to us it is more a game of
hiding the solution, a game that could create more frus-
tration than comprehension. We will discuss this situation
and ask for another kind of activities in the next section.

We cannot replace the abstract and logical concepts that
are taught in mathematics by experiments alone. There
are educational goals beyond learning arithmetic and
geometry. Proving, logical deduction, the ability to
clearly state facts and conclusions and to communicate
these to others are at least as important as learning to
work with numbers. We will address this in section 3.

2 Using Computer Software for Experiments

In disciplines that inherit experimental approaches for
centuries there exists a rich set of setups that can be used
to demonstrate, explore and understand the laws of na-
ture. Mathematicians and mathematics teachers cannot
refer to such setups. In fact, most of them will not even
know how to design a mathematical experiment. They are
used to work without the uncertainties that are inherent to
experimental approaches, and probably they do not like
the idea of not being sure about what will happen next.

There is a (more or less historical) reason for this atti-
tude. It is hard to just try what will happen next, because
one has to carry out lots of calculations, do many sym-
bolic manipulations, draw thousands of diagrams – most
of it without getting any usable result. “Poking around” –
or trial-and-error – in the set of possible solutions will not
yield an answer of any kind in reasonable time, if every
try takes a long time. Neither positive nor negative results
are likely, and it seems to be a better advise to think
harder before trying harder.

As an example, let us consider the task to solve a poly-
nomial equation (and assume we do not know how to do
this, and the criteria whether it is possible at all). If we
just assume that there is a solution that is a nested square
and cubic root expression, we can start enumerating
these, either systematically or by random. For each we
can search for suitable coefficients that will solve the

Analyses ZDM 2004 Vol. 36 (2)

62

original equation. For polynomials of degree less than 5
we might eventually succeed, for most polynomials of
degree at least 5 we will not. Either way, it will take a
very, very long time, and it does not seem like a good
strategy of dealing with this task. Actually, just doing
something is like guessing, and the successful applica-
tions of guessing in mathematics are rather limited.

This situation has changed dramatically. The incredible
speed of computers (and the speed’s insane growth rate)
makes guessing an option for many problems today.
There will be more and more cases where it is just faster
to find a solution by (complete or incomplete) enumera-
tion than by thinking of a solution. Brute-force ap-
proaches start becoming feasible (without becoming
mathematically appealing, though). In the appendix we
discuss how this compares to the fact that there are prob-
lems known to be computationally intractable.

Still, one should be aware that even if guessing be-
comes feasible, this does not mean that we do not need
thinking anymore. Au contraire, the a priori work (de-
signing the experiment) and the a posteriori work (de-
ducing the results) of the experiment require deep
(mathematical) knowledge. We should see this as an
opportunity to change the focus of teaching from the
arithmetic to mathematics in a more global fashion.
Similarly to the paradigm shift that was induced by the
introduction of pocket calculators, which made mental
arithmetic less important than it used to be, we should use
the computer as a tool that clears the way for the essen-
tial.

If we accept the fact that computer software is a suit-
able tool to improve teaching, we immediately come to
the conclusion that there are some basic requirements for
the software. Let us list them as postulates for experi-
mentation software:

First, the software has to be mathematically correct. All
calculations and derived displays should be either correct,
or they have to be clearly marked as approximations.
Today, many users are familiar with the fact that com-
puter software may be “buggy,” but still there is a kind of
slavish obedience. People tend to believe that everything
that is not apparently wrong on a computer screen can be
taken as a true fact. We can observe the same behavior,
which is very similar to the way television is perceived,
for example when the world-wide web is used: If the first
web page that Google finds looks reasonably serious, its
contents will be taken as hard facts. Another example is
the automatic spell checker in today’s word processors: If
a person is unsure about the spelling of a word, then he
tends to believe in the suggestion of the software.

Taking this obedience into account, we see that compa-
nies like Microsoft can use their dominance in the soft-
ware market to change the spelling of words, just by
making many people believe that it is correct like the
software proposes it. Even worse, companies like Google
can replace the information society by a mediocre society
that is based on rumors.

The above may sound exaggerated, but it should point
out that it is important to take care that software used for
teaching and research is either reliable or clearly marked
wherever it is not reliable. Otherwise, we are in danger to
loose control about what we teach!

Second, the software has to be as easy to use and as ac-
cessible as possible. Unfortunately, most people think
that scientific profoundness and ease of use are contrary
concepts. This led to a lot of wonderful, but basically
unusable, though powerful, software products written by
mathematicians; in fact, even professional packages like
Maple or Mathematica cannot be used intuitively. Most
resources of the companies are used to improve the kernel
of the software, less are used to enable others to use the
kernel.

This might be acceptable from a scientific point of
view, but it inhibits the use of the software in educational
scenarios. There is not enough time in the classroom to
introduce a complex software package in order to per-
form a single experiment.

We also have to mention here that usability starts with
the installation of the software. If we cannot even install
the software on a computer, or if it takes a significant
amount of time, we take away this time from the total
time we have to teach or research.

A more detailed discussion of requirements for mathe-
matical software can be found in Kortenkamp (2001).

3 Experiment versus Proof

The headline suggests that experimentation differs from
the rigorous concept of proof as it is usually used in
mathematics. Despite that suggestion we want to make
clear that experimental techniques do not have to be or-
thogonal to proving, but they can supplement, enrich and
enhance traditional proving.

For a concise overview over the role of proof in the
classroom we refer to Reiss and Renkl (2002).

3.1 Using experiments in order to motivate proofs

A well-known problem in mathematics education is the
fact that students are not able to identify situations in
which they have to prove something. The difference be-
tween facts and theorems, trivialities and surprising re-
sults, hypothesis and conclusion, or – in algorithmic set-
tings – input and output, seems to be hidden for people
who are not skilled in mathematics. Before we can teach
how to prove a theorem, we have to teach when to prove a
theorem.

Using experiments can help, if we take care of the
setup. It does not suffice to perform an experiment that
will show the desired result, but we will also need an
experiment that will contrast the perceived “facts” of the
first experiment.

Without going into the details, we just mention the my-
riads of triangle points that can be found and visualized
with geometry software. Without at least one example of
three lines that will not meet in a common point, there
will be no motivation at all to give a proof that another
triple of lines does meet. We have to contrast a special
situation with the general one to create this desire.

3.2 Using experiments to eliminate proofs

Many times an experiment can eliminate a proof. This is

ZDM 2004 Vol. 36 (2) Analyses

63

done not by using the experiment as a proof, but by per-
forming an experiment that shows that there is no theo-
rem to proof, because the conjecture is false!

Closely related to proving and disproving by example,
we can use experimental techniques for quickly finding
the necessary conditions for a theorem to be true at all
and to give counterexamples for the other cases. This is a
valuable time saver in research, and it can also help to
focus the attention of the students to the right cases in the
classroom by “pruning the wrong branches”.

For illustration, we want to refer to a real-world exam-
ple that occurred in one of the first year teacher students’
lectures at the Technical University of Berlin. The course
on elementary geometry is based on lecture notes that are
used for at least some twenty years by now. Geometry is
introduced in a way that is similar to Hilbert’s approach.
Starting with the axioms of incidence, more and more
axioms are introduced, aiming at a model that is as close
as possible to the “usual” geometry that the teachers shall
teach to their students in a few years.

Almost all courses like the one described here will in-
troduce the Parallel Postulate at some point– for each line
g and each point P there is exactly one line parallel to g
through P –, which a crucial step on the path to Euclidean
geometry. At the Technical University, we do not rely on
this axiom, but instead we require that every central dila-
tion is a similarity (which is the case in Euclidean ge-
ometry).

The Parallel Postulate can be proven using this axiom.
This implies that the axiom cannot be fulfilled in non-
Euclidean models. Here we can apply an experiment
successfully: In one activity, the students construct the
dilated image of a segment in the hyperbolic halfplane
model using geometry software.4 They can observe im-
mediately that dilations map lines to something else,
which are not lines. This observation both makes them
understand one fundamental difference between Euclid-
ean and non-Euclidean geometries and helps them to
remember it.

3.3 Using experiments to make proofs understandable

In some cases it is feasible to replace a proper argument
by an experimental fact, that is, when we want to high-
light the global structure of a proof. In a complex proof
that should be understandable it is not possible to rigor-
ously show every detail. The usual and important tech-
nique, in fact, one of the most important contributions of
mathematics, is to subdivide the proof into several sim-
pler proofs, creating new lemmas, propositions and defi-
nitions. Using the technical armor it should then be easier
to follow the proof as a whole. Compare this to the recent
work of Hartmann (2003).

Unfortunately, it is not; at least not without more time
to digest the additional vocabulary and tools. This leads
to teachers (and lecturers) leaving out the details of the
proof of a lemma (“easy!” – “trivial!” – “homework!”).
Here it is much more honest and helpful to use a quick

4 You can view the construction online at http://www.math.tu-
berlin.de/Vorlesungen/WS03/EleGeo/Poincare/Streckung.html.

experimental check for the “easy!”-parts. If it is really not
important to know the detailed proof, an experiment will
be good enough, if it is important, then we already have a
motivating example.

3.4 Using experiments to find proofs

Now we address the most appealing, in our view, way to
use an experiment: use it for finding a proof.

It is hard to give general rules for designing experi-
ments that can help in finding a proof. As this is a re-
search grade activity, we cannot expect to be able to find
such a general rule at all. But there is at least one tech-
nique that we can try to apply in many cases.

The “(n-1)-rule” which is described by Weth (2002),
but is a pattern that is traditionally known by mathemati-
cians, proposes to prove theorems by relaxing one of the
n constraints of the hypothesis and looking for the family
of solutions for the relaxed system. Weth applies this to
geometric theorems using dynamic geometry software.
Then the family of solutions is usually given by the locus
of an easily constructible point, and we can start by ex-
amining this locus.

Creating a locus is a prime example of an experimental
activity using dynamic geometry software. We want to
illustrate the process of using loci with an example that is
based on a discussion thread in the geometry forum.5

The original question was:

From: ken@forum.swarthmore.edu
Subject: Regular 4-gon in hyperbolic geometry?
Date: 03/05/2000 23:42:46 MEZ
To: geometry-software-dynamic@forum.swarthmore.edu

Hi,

I've been trying for a while to construct a
regular 4-gon in hyperbolic geometry (4 congru-
ent sides, 4 congruent angles) and haven't been
able to do it yet. I'm using Sketchpad with the
Hyperbolic tools from
http://forum.swarthmore.edu/sketchpad/gsp.galler
y/poincare/poincare.html .

Does anyone know how this can be done (I as-
sume it can)? Note: the figure will *not* have
any right angles.

How about regular 5-gons and 6-gons?

Constructions based on measurements or trans-
formations are fine. My goal is to come up with
a set of tools (scripts) that carry out these
constructions.

Thanks.

Followed by this a day later:

A clarification: I can already construct an
inscribed regular 4-gon, i.e. "regular 4-gon
by center & radius." I want to find a technique
for "regular 4-gon by edge."

Here is a solution, depicted in the Poincaré disk model
of hyperbolic geometry:

5 Now hosted at Drexel University, online at
http://www.mathforum.org

Analyses ZDM 2004 Vol. 36 (2)

64

Given the segment AB, we start by constructing the
points C, D, and E. These are the intersections of arbi-
trary lines through A and their respective hyperbolic
perpendiculars through B. The black curve is the conic
through these five points. The line h is the perpendicular
bisector of A and B, and the intersection of the conic and
this line is the center of the regular 4-gon ABKL given by
the segment AB.

The correctness of the construction follows from the
fact that there is a theorem of Thales type for hyperbolic
geometry: all points that form a 90° angle with the points
A and B lie on a common conic.6 This conic is con-
structed by finding three additional points on it (A and B
are on it already). The perpendicular bisector is at the
same time an angle bisector of the isosceles triangle ABH.
If we observe that we now know a quarter of the 4-gon,
then the rest of the proof is easy and left to the reader.

This construction is not easy to find, although it is
rather straightforward once we know that there is a
“Thales-conic”. The construction was found by Jürgen
Richter-Gebert and published in the Mathforum a few
days later. He started with the segment AB and created the
locus of a point that was constructed like C, D, or E
above. The locus looked strange in the Poincaré disc, and
actually one would not guess that it is indeed a conic
section.

However, the dynamic geometry software Cinderella he
used for his experimentation was able to display this
locus simultaneously in the Beltrami-Klein model, where
it looks like a conic, and it also gave the quadratic equa-
tion in the construction text. It was only this support by
the software that made him realize that he could devise
the construction shown above, and it was easy to prove
its correctness later.

It is a matter of fact that the mathematics used to ad-
dress this special problem now have matured and were
used to implement general (Euclidean and non-

6 A generalization would be that the locus of all points that form
any given angle with two other fixed points is a conic; however,
this is not true in general: the locus will be a curve of degree 4.
Only the special uniqueness property of the right angle causes
the curve to degenerate to degree 2.

Euclidean) n-gons in Cinderella version 2.

4 Student Scenarios

We have seen some examples of successful use of ex-
perimentation software. Still, it is not easy to give general
guidelines for the successful use of software experiments
in the classroom.

Here we want to report on a recent experimental type
activity that was part of the Advent calendar of the DFG
Research Center Modeling, Simulation and Optimization
of Real World Processes, Berlin. This Advent calendar is
an online calendar7 that contains a new mathematical
problem each day. Students of grades 9 to 12 can solve
these questions online. Registered participants will take
part in a prize draw among those who had the most and
earliest right answers. The number of participants was
about 1,000 in December 2003.

On day 14, students were asked to give the maximal
number of halving lines for a set of ten points. Two points
of the set are said to define a halving line, if the line
through them cuts the set in two parts of equal size.

The interactive experiment was created using the new
API (application programming interface) of Cinderella
(Richter-Gebert and Kortenkamp, 2003). With only a few
lines of Java-code it is possible to extend the basic func-
tionality of Cinderella to include custom problem formu-
lations like this one. These environments can then be
exported to the WWW.

This problem was completely new to the students, and
they had no experience at all with problems from com-
putational geometry, so we could not expect that all of
them were able to handle the problem. But the outcome
was much worse than we expected: Only 50 students had
the right solution after two days.

Further investigation showed that the main reason for
this disastrous result was a technical one. We did not test
the activity on all the platforms that were used by the
students, and for many of them the page just did not load
correctly – only 150 students were able to submit a solu-
tion at all, and not all of them had access to the online
experiment. This again shows that technical problems are
much more of a barrier than we want them to be. It also
highlights the need for professional development and
testing.

We also ran in a problem of mathematical correctness.
The algorithm that was used for the experiment was not
stable for degenerate situations, which made it possible to
have more halving lines than the maximal value possible
in theory. This could be fixed immediately after it was
reported by one of the students.

 When we want to avoid such problems, we have to use
some resources to create a canon of successfully used
experiments on the one hand, and on the other hand we
have to spend some resources on reliable and supported
framework software that can be used to create such ex-
periments. For the single teacher it is too time consuming
and difficult to come up with these himself, and even if
he does, then the chance that this material is re-usable by
other teachers (or even for other classes of the same

7 Available at http://www.fzt86.de/Adventskalender

ZDM 2004 Vol. 36 (2) Analyses

65

teacher) is almost zero. It is a research problem to create
software that is suitable for experimentation.

5 Documentation

The use of computer tools for experimentation immedi-
ately leads us to a question that tends to be ignored when
new technology is introduced in the classroom: How can
experiments be documented in a suitable form, for exam-
ple for keeping a diary of learning progress?

We just want to give a very brief overview over this
highly important topic and refer to the article describing
the CINErella extension of Cinderella (Kortenkamp,
2004).

The key point is that the result of an experiment is not
only its final outcome, but also the way leading to it. A
student should be able to describe the experimental setup
and the implementations. It would be ideal if this could
be done using the same technical tools that are used for
the experiment. This is possible, for example, with
Mathematica and its notebooks, where intermediate re-
sults and calculations can be augmented with text and
media. These notebooks are self-contained units that can
be used to reproduce the thoughts of the one who per-
formed the experiment.

The main observation is that we have to use the inter-
active and computing power of computers. We want to
use them for more than just audio or video playback, and
we have to make sure that we do not lose the content by
presenting it nicely.8

6 Conclusions and Acknowledgements

Let us collect the necessary conditions for successfully
employing experimentation in teaching:

Designing experiments is difficult. Finding the right
experiment can be most important thing to learn, but will
often be too difficult for the average student.

Mathematical rigor and proofs are not contrary to expe-
rience-based mathematics; instead both supplement each
other. Mathematical intuition can be build by doing math,
and proofs will be easier found and better understood
when backed by an experiment.

Good software is a crucial ingredient for computer-
based experimentation in mathematics. It must be
mathematically correct, as bug-free as possible, easy to
use and accessible for a large audience. Currently, all
software packages have to improve a lot to meet these
criteria.

For custom-made experiments, a suitable development
toolkit should be available that makes it possible to con-
centrate on the mathematics and not on the technical
implementation. This is also very important for proper
documentation of the experiment that can also be used by
others.

The paradigm shift and the generally wider acceptance
of mathematical experiments will help to create databases
of “good” experiments. This is necessary, as no tradition
of using experiments exists like there is in other disci-

8 http://www.wired.com/wired/archive/11.09/ppt2.html

plines.
 I would like to thank Jürgen Richter-Gebert (in par-

ticular for the 4-gon construction and the discussion in
Obidos that lead to the Appendix) and Jon Borwein.

Appendix: Solving NP-hard problems in linear time

It is rather uncommon to have proofs of P=NP, one of the
Millenium-problems of the Clay institute9 in an appendix
of an otherwise unrelated article, and thus we will not
prove it here. On the contrary, we will not give any proof
about the relationship of the two complexity classes, but
we will just point out that it is reasonable to expect that
we can run algorithms with worst-case runtime that is
bounded from above and below with an exponential
function, which is contrary to common belief. You might
consider the proposed approach below cheating, and we
will discuss this later to justify it.

As an example we will use the traveling salesman
problem (TSP), which is known to be NP-complete in the
general case. In the traveling salesman problem we are
given a graph G consisting of n vertices V and m edges E.
Each edge e of E is weighted with a real number we. We
are looking for a round-trip tour of minimal weight that
passes through all vertices exactly once, moving from
vertex to vertex by following the edges. The weight of
such a tour is the sum of all the n edges that are used by
the tour.

The brute-force approach to finding the shortest round-
trip would be to try all possible tours. This algorithm had
to evaluate n! different tours, so its running time would
be at least n! multiplied with some constant. It is immedi-
ate that its running time is thus bounded by an exponen-
tial function in n both from above and below. Unfortu-
nately, in this case, there is no algorithm known yet that is
significantly faster; in particular, there is no known poly-
nomial-time algorithm. It is also rather unlikely that there
is such a thing, as it would disprove the widely accepted
conjecture that P (the deterministic polynomial time algo-
rithms) is a proper subset of NP (the polynomial time
algorithms on non-deterministic Turing machines).

Now we claim that we can solve the TSP in linear time
in real life. We have to assume Moore’s law: The average
processing speed of computers will double every 18
months. This law has been proven to be true for many
years by now – please take a moment to recall your first
computer and its CPU clock rate. Divide the number of
years between the time you got your first computer to the
time you got your last computer by 1.5 and take 2 to the
power of this number. Now check whether the ratio of
your current computers clock rate is approximately the
same number. It should, in most cases.

Once we are allowed to extrapolate from Moore’s law
into the future, we are done. For simplicity, assume that
the running time of the algorithm – measured in instruc-
tions that have to be carried out – is bounded from above
by c2n, with c>0 being a (fixed) constant. We modify the
algorithm and get a new one in the following way:

(1) Wait for 3n/2 years (18n months)

9 http://www.claymath.org/Millennium_Prize_Problems/

Analyses ZDM 2004 Vol. 36 (2)

66

(2) Buy a new computer.
(3) Run the algorithm on the new computer.

How much time will this new algorithm take? Step (1)
takes 3n/2 years, Step (2) can be done within at most a
week, and Step (3) will depend on the number of instruc-
tions per second the new computer will be able to exe-
cute. If the current computer you have can execute a
million instructions per second (which is highly underes-
timated), the new one will be able to do 1,000,000 ⋅ 2n

instructions per second. This means, that Step (3) finishes
within c2n / (1,000,000 ⋅ 2n) = c / 1,000,000 seconds. All
in all this is linear time.

Where is the cheating? We are changing the complexity
analysis from counting instructions to measuring seconds,
which is apparently a completely different thing. How-
ever, it is a fact of matter that most people do not care
about the number of instructions the algorithm will go
through, but about the point in time when they will get
the result.

Of course, this appendix should not be taken too seri-
ously, but you should keep in mind that “being NP-hard”
is not a K.O.-criterion for an algorithm. If we talk about
problems that can be tackled experimentally, we can
expect that their number is growing. As a last example let
us mention the enumeration of reorientation classes of
oriented matroids: While it was completely out of reach
to do brute-force enumerations of all 11-point configura-
tions five years ago, it is now more-or-less easy to do,
and we can start to think about 12 points. In another five
years, we should be able to think about 13 points, which
means that we can do n points in about 5(n-12) years. Not
fast, but linear time – you get the point.

References

Borwein, J. (2003). Mathematics by Experiment: Plausible
Reasoning in the 21st Century, October 2003, available online
at http://www.cecm.sfu.ca/personal/jborwein/rsc-talk.pdf

Elschenbroich, H.-J. (2003), Funktionen dynamisch entdecken,
Bericht über die 20. Arbeitstagung des Arbeitskreises “Ma-
thematikunterricht und Informatik” in der GDM (pp. 43-54).
Hildesheim: Franzbecker.

Gawlick, Th. (2003), DGS als Trägermedium für interaktive
Arbeitsblätter in der Differentialrechnung, Bericht über die
20. Arbeitstagung des Arbeitskreises “Mathematikunterricht
und Informatik” in der GDM (pp. 54-66). Hildesheim: Franz-
becker.

Hartmann, M. (2003), Formen multimedialen Lehrens – ein
Vergleich, Bericht über die 20. Arbeitstagung des Arbeits-
kreises “Mathematikunterricht und Informatik” in der GDM
(pp. 54-66). Hildesheim: Franzbecker.

Hartmann, M. (2003), Steigerung der Effektivität multimedialer
Lernumgebungen durch Pop-up-Ikonogramme, Beiträge zum
Mathematikunterricht 2003 (pp. 277-280). Hildesheim:
Franzbecker

Heintz, G. (2003), Einsatz von DGS am Beispiel von Cinderel-
la, Bericht über die 20. Arbeitstagung des Arbeitskreises
“Mathematikunterricht und Informatik” in der GDM (pp. 54-
66). Hildesheim: Franzbecker.

Kortenkamp, U., Richter-Gebert, J. (1998), Geometry and Edu-
cation in the Internet Age, Proceedings of the ED-MEDIA &
ED-TELECOM 1998 World Conference on Educational Mul-
timedia, Hypermedia and Telecommunications, Freiburg:
AACE. Online: http://www.cinderella.de/papers/geo-i.pdf.gz

Kortenkamp, U. (2001). The Future of Mathematical Software,
Proceedings of MTCM 2000. Heidelberg: Springer-Verlag.

 Kortenkamp, U. (2004). Algorithmen, Dokumentation, und der
Einsatz neuer Medien im Unterricht, in preparation for: Be-
richt über die 21. Arbeitstagung des Arbeitskreises “Mathe-
matikunterricht und Informatik” in der GDM, Hildesheim:
Franzbecker.

Oldenburg, R. (2003), Feli-X: Ein Prototyp zur Integration von
CAS und DGS, Bericht über die 20. Arbeitstagung des Ar-
beitskreises “Mathematikunterricht und Informatik” in der
GDM (pp. 54-66). Hildesheim: Franzbecker.

Reiss, K., Renkl, A (2002), Learning to prove: The idea of
heuristic examples, Zentralblatt für Didaktik der Mathematik
(Vol. 34 (1), pp. 29-34), Karlsruhe: FIZ.

Richter-Gebert, J., Kortenkamp, U (1999). The Interactive
Geometry Software Cinderella, Heidelberg: Springer-Verlag.

Richter-Gebert, J., Kortenkamp, U. (2003). Beta-Release of
Version 2 of Cinderella, available on request by email to the
author.

Schumann, H. (2003), A dynamic approach to ‘simple’ alge-
braic curves, Zentralblatt für Didaktik der Mathematik (Vol.
35 (6), pp. 301-316), Karlsruhe: FIZ.

Weth, Th. (2002). Die n-1-Stragie, Tagungsband zum Nürnber-
ger Kolloquium zur Didaktik der Mathematik 2002 (procee-
dings), available online at http://www.didmath.ewf.uni-
erlangen.de/Vortrag/vortrag02/weth_n-1Strategie.pdf

Author

Kortenkamp, Ulrich, Prof. Dr., Mathematisches Institut, Techni-
sche Universität Berlin, Sekr. MA 6-2, Straße des 17. Juni
136, 10623 Berlin
Email: kortenkamp@math.tu-berlin.de

