Geometry Teaching in Wireless Classroom
Environments using Java and J2ME !

Ulrich Kortenkamp P Dirk Materlik

aTU Berlin, Fachbereich Mathematik, Strafie des 17. Juni 186, 10623 Berlin
bEU Berlin, Institut fir Informatik, Takustrafie 9, 14195 Berlin

Abstract

Interactive geometry software is established as an important tool in geometry and
math education. We present our research on possible ways to use such software
in wireless classroom environments. In particular, we address user interface issues
on portable devices and describe how we maintain a common code base for both
desktop and mobile environments, thus increasing the stability of the application.
We also report on our empirical data comparing different Java virtual machines
that are available for portable devices using a prototype implementation of the
Interactive Geometry Software Cinderella for J2ME.

Key words: Java, J2ME, wireless classroom, geometry, Rendezvous, Cinderella,
Zaurus, collaborative environments

1 Introduction

1.1 The Interactive Geometry Software Cinderella

The starting point of our investigations is the software package Cinderella [21],
which has been developed by our group since 1996. Cinderella is a software
for doing geometry on a computer. You can work with points, lines, segments,
circles, conics, polygons and other objects using the mouse. In contrast to
drawing software like, e.g. Corel Draw or Adobe Illustrator, the objects you

Email addresses: kortenka@math.tu-berlin.de (Ulrich Kortenkamp),
materlik@inf.fu-berlin.de (Dirk Materlik).
1 Supported by the DFG research center “Mathematics for key technologies” (FZT
86) in Berlin.

Preprint submitted to Elsevier Science 28 February 2004

Fig. 1. A simple Locus: All circle radii are fixed. Point C' moves on the circle around
A. D is the intersection point of the rightmost circles. F is the midpoint between
C and D. The red curve is the locus of F, i.e. all possible positions of E under
movements of C.

create are not independent of each other, but may be connected by mathe-
matical relations. The most basic example is a line through two points which
will automatically update its position when one of the points is moved. Us-
ing relations like orthogonal, parallel, midpoint of, etc. it is possible to create
complex constructions consisting of free and dependent elements.

When a free element is moved, the elements dependent on it are updated au-
tomatically. This guarantees that user-supplied mathematical constraints will
always be fulfilled. In a way this is comparable to parametric CAD systems,
but Cinderella is not intended as such, but it is rather meant as a tool to be
used in math research and education.

For almost 15 years many similar packages have been developed, starting in
the end of the 1980’s with Geometers’ Sketchpad [8] and Cabri Géometre [15],
which are still the most widely used ones. Cinderella, while lacking some of the
features of Sketchpad and Cabri, sets itself apart by providing features that
make it useful for advanced geometry research. Among these are multiple
views that support multiple (non-euclidean) geometries, a consistent imple-
mentation of continuous movements, and self-exploring loci (see Fig. 1 for an
example of loci). For a description of the mathematical foundations of Cin-
derella we refer to [11], and for in-depth coverage of the non-trivial algorithmic
and mathematical problems we recommend [22].

An innovative feature of Cinderella is the ability to export its constructions
as interactive web pages [13]. This is possible because Cinderella is written
entirely in Java [14]. A Java runtime component, packaged as a jar file, that
contains an applet version of the software, is provided for that purpose. It
may be copied freely and even be placed on the web. All Cinderella owners
can thus publish their work in an interactive form. The constructions can be
manipulated on a web page by moving free elements in exactly the same way
as in the stand-alone version.

It is even possible to export part of the user interface to the web. We use
this to support interactive construction exercises: A teacher can take parts
of a construction and hide them, mark parts of the construction as suitable
intermediate results, and select the final solution elements a student should
find. Using either a predefined set or a custom choice of the construction tools
a student should then try to find a the solution on her own, starting from
the non-hidden parts. She can request help which will reveal the intermediate
results one after the other. You find a examples of interactive exercises on our
web page [2].

This seems a rather rigid way of solving exercises, but the mathematical meth-
ods inside Cinderella ease the restrictions: Cinderella is able to prove whether
a different solution is equivalent and thus also correct. The student may find
her own ways of solving the exercise, even ways that the teacher did not know
or think of.

A special version for schools [20] is based on these web export features. It
includes more than 130 example constructions and exercises that are especially
suited for K-12 education. Free and commercial exercises are available on the
web, for example at MathsNet [3].

1.2 Modern Hardware for Classroom Education

During the last years new hardware has emerged that seems to be especially
suited for classroom use. Our goal is to find out whether the Cinderella system
can take advantage of the new hardware without spending too much effort on
porting and testing, as we can devote only few resources to this.

Here we consider two devices that represent the two extremes in size: Electronic
Whiteboards and Personal Digital Assistants (PDAs). Electronic Whiteboards
are used as a mouse replacement for desktop or notebook computers: The
computer screen is projected onto the whiteboard. The whiteboard detects
the position of a special pen using electromagnetic technology, comparable
to a large version of Wacom graphics tablets. The scenario we think of here
is the traditional classroom in which the teacher stands in front of the class,
explaining the subject matter. Cinderella on an Electronic Whiteboard can aid
the teacher by facilitating the exact visualization of geometric constructions
and proofs.

Today’s PDAs, on the other hand, are shrunken versions of desktop computers,
providing processing power equivalent to that of desktops a few years ago.
They are powerful enough to run Cinderella. We envision them to act as
“geometric pocket calculators,” doing for geometry what traditional pocket
calculators do for arithmetic. They act as accurate drawing paper in which the

elements are movable. This is preferable to furnishing students with desktop
or laptop computers; due to their smaller size, the PDAs are much less in
the way of teacher-student interaction. Additionally, they are purpose-built,
therefore they cause less struggle with software installations.

With the advent of wireless networking for PDAs, further scenarios become
possible. With the right software it is possible for several persons to jointly
work on the same construction. A major drawback of computer-based activi-
ties — the lack of communication between students and between students and
the teacher — can be avoided in this way. More specifically, we want to enable
at least the following scenarios:

e The teacher presents a construction that is accessible to all students on their
local machines. A student can be asked to identify parts of the construction
or to complete a construction without having to present in front of the class
and change the computer she is working with/?]

e Students work in groups to solve a problem. Every student can try out her
own solution locally and “publish” it for the others when she thinks they
should use her partial solution to continue.

e Students work on their own under supervision of the teacher. When the
teacher wants to comment on a student’s work she can link to her construc-
tion and show it to the whole class.

e Students in remote locations can share their knowledge about a construction
and demonstrate their findings live. This is further supported by a simple
chat facility.

Again, we stress that all this can be done (and is done already) with desktop or
laptop computers. However, we are sure that PDAs can be a better alternative
as they do not interfere as much with human-human interaction as computers
do. Also, they are cheaper than notebook computers and could be built more
robust than these, which is important for classroom use.

1.8 Reasons for Using Java and J2ME

Current portable devices for geometry are based on programmable graphic
calculators. In particular, there exist geometry modules (based on either Ge-
ometers’ Sketchpad or Cabri Geometry II) for the TI-89/92 calculator series
of Texas Instruments. More recently, the Casio Classpad 300 has been intro-
duced, which includes built-in geometry software by Saltire Software.

2 We understand that it is not advisable to reduce the physical exercise of todays’
children. However, our experience is that teaching in computer labs leads to students
that do not leave the place in front of the computer anyway and then there is no
easy way to jointly present anything for the whole group.

Despite the common name of the desktop version and the mobile version,
the software running on these devices was written specifically for them. This
is a disadvantage, for examples when trying to share constructions between
the versions: Not all features are available in both worlds, the file formats
are different and have to be converted, and the behavior of the constructions
depends on the platform.

Another drawback of the calculator-based devices is the lack of features that
are now available on PDAs. You cannot use wireless or even wired network
connections. There is only a serial port (cable- or infrared-based) that can be
used for slow file transfers. The screen is monochrome; modern PDAs or even
cellular phones sport color displays.

By using Java, we can port our software to PDAs, and benefit from the addi-
tional features above. Even better, we are able to share a common code base
between the desktop version and the PDA version. This not only reduces the
necessary resources for developing the software, but also makes it easy to en-
sure a common feature set and common file formats across platforms. Bugs
fixed on one platform will automatically be fixed for all other platforms as
well.

2 A PDA Version of Cinderella

2.1 User Interface Issues

Before we could create a version of Cinderella for whiteboards or hand-held
devices we had to redesign the desktop-oriented user interface [16]. Both of
these devices are pen-driven, which has some implications for the user inter-
face. One, on the whiteboard the user has to move her hand a longer distance
than with a mouse; this makes a toolbar-oriented interface awkward to use. On
a PDA’s limited screen size there is not enough room for a toolbar-oriented
interface anyway. Two, with a pen, usually there is no “mouse-over”-event,
only mouse button presses and mouse drags can be observed. This makes it
harder to guide the user with tooltips and other hints. Three, we can rely only
on a single logical mouse button, e.g., in the case of touch screens. Four, pens
are different in that clicks and drags are more difficult to distinguish than with
a mouse, because the pen will usually move a little between button-down and
button-up.

The last problem was easily solved using a custom recognition for mouse clicks
that filters the accidental movements and generates custom click events instead
of the ones provided by the platform. The other points had to be addressed

on a more fundamental level.

Normally, relations between elements are introduced by choosing the corre-
sponding mode, e.g., " Circle by Midpoint and Radius,” from the toolbar. To
eliminate the toolbar, two approaches are possible: Minimize the necessity of
switching modes, or find a way to select a new mode that does not involve
travelling long distances with the pointer and takes up no screen space. We
pursued both, the first by a new mode called Scribbling, the second by Cin-
derella Flow Menus.

Scribbling is a gesture-based input method that translates sketches of con-
structions into formal construction sequences. Here, points, lines and circles
are drawn as they should appear on screen. The software distinguishes them
by applying certain metrics, e.g. the curvature and size of the drawn objects.

Fie Edit Moces Properlies Geomelry Views Format Language Menu Help

Sketch modes vour construction will be auto-detected |

Qlaﬁf ~CH AQD[A[1118

Fig. 2. Scribbling on the Zaurus C-700 (original size)

The definitions of new elements are set to default values: points are freely
movable, lines will be incident to the points are incident to them in the draw-
ing, if any. If there are no incident points, new free points will be generated.
Circles are handled similarly, their current radius (as read off the drawing)
will be taken as a parameter, their midpoint is either an existing point that
happens to be in the center of the circle, or a new midpoint will be generated.

If a user wants to create objects that have additional properties, i.e. that are in
special relation to the existing elements, she can add these either by specifying
certain hints before drawing the element or by drawing certain marks after
the element has been added.

Currently, the relations that can be added include:
point on, intersection When a point is drawn on top of an existing line or

circle, or on the intersection of two lines, it will be a point bound to that
element or intersection.

parallel lines After drawing a line ¢; through points A and B, this line and
another line £y can be ticked with a short stroke, which will change ¢; to a
line parallel to /5 through A. Alternately, a line may be preselected; if the
new line is approximately parallel to the existing one, it will be considered
such.

orthogonal lines After drawing a line the intersection of this line with an-
other line is marked with a short stroke (similar to drawing a orthogonality
angle mark), which will change this line to a line orthogonal to the second
line. Alternately, if a line is preselected and the new line is approximately
orthogonal to it, the new one will be considered an orthogonal.

midpoint If two points A and B are preselected before a point is drawn, this
new point will be the midpoint between A and B.

circle by center and another point If the drawing of a circle starts at a
point A, its radius will be determined by the distance between A and its
center. The center can be preselected by tapping it before drawing the circle.

It is also possible to move an element instead of drawing new elements by
selecting it first. It will be highlighted and can then be moved with the pen.

Flow Menus have been proposed as a variant of menus that do not require
moving the pointer far away from the current focus of interest [4]. We adapted
them to Cinderella Flow Menus. A flow menu is a variant of a radial menu
in which a menu item is selected when the pointer moves from one of the
outlying areas back to the center one. Submenus are also selected when the
pointer moves in the opposite direction, from the center to the outlying area.
Implicitly, commands chosen from submenus become gestures that the user
learns automatically.

)

File Edit Wodes Properties Geometr;.\/iews Language Menu Help

| Parallel

DirkSer ibbling: try to sketch something |

QIEB/ - AR 503

Fig. 3. A Cinderella Flow Menu on the Zaurus C-700 (original size)

The mode-selecting Cinderella Flow Menu, as shown in the picture, is acti-
vated either by a special gesture from the Scribbling mode or from the menu.
Using flow menus on a pen-driven device feels natural after a short time and
is much faster than the alternative of drop-down menus.

Further details of the design and implementation of both approaches can be
found in [16].

2.2 Target Devices and Licensing

Modern PDAs are powerful enough to be used for interactive applications
like Cinderella. For us, it was important to use a device that supports Java,
as explained in section whyjava. Furthermore, it is important to stick to the
graphics and user interface toolkit. For maximum compatibility, Cinderella
uses the Java AW'T version 1.1, which is included in almost every desktop
Java VM, in particular in most versions of Microsoft Internet Explorer.

The dominant PDA operating system today is PalmOS. When we first ported
Cinderella, PalmOS was only available in version 3, which was not able to
support Java and the standard Java windowing toolkit AWT. Today, in version
5 and on modern hardware, J2ME support should be possible; however, it
seems there is no VM available yet, but various efforts have been announced.
All these efforts do not provide standard AWT compatibility, but conform to
the MIDP profile [17] which means that the whole graphics code of Cinderella
would have to be rewritten. Therefore, we currently do not consider PalmOS

PDAs.

The first device we did test was a Casio Cassiopeia E-125G. This is a Pock-
etPC using Microsoft Windows CE 3.0 as operating system. As there is no
pre-installed Java VM on this device we had to look for a third-party im-
plementation. We finally obtained a commercial implementation of Java by
Insignia Solutions, the Jeode Java VM. Although we have been able to port
Cinderella to this device using a developers’ version of Insignia Jeode, we did
not pursue this further as it is not possible to obtain single-user licenses for
the Cassiopeia version of Jeode. The Jeode VM was made available as a user-
installable add-on for the Windows CE 3.0 PDA series made by Compagq later,
but we did not test this version yet.

When SHARP introduced the the Linux-based Zaurus SL-5000/5500, Java
support was advertised as one of its main features. The Zaurus SL-5x00 and,
more recently, the SL-C7x0 series ship preinstalled with the Jeode VM version
1.10.7 by Insignia Solutions. It conforms to the PersonalJava 1.2 specification
by Sun Microsystems [7]. However, PersonalJava is not a Java 2 environment,
it only conforms to version 1.1 of the language specification with some addi-
tional APIs, and it will soon begin the Sun End of Life process [24].

Recently, Sun has made available an early access version of a Java 2, Micro
Edition virtual machine for Zaurus at [25]. This is a scaled-down Java 2 en-
vironment including the personal profile [9]. The version available to us is the

early access release 1.0ead, the version shipping on the new SL-C750/C760 is
the final version and may differ in performance and bug fixes from this one.

For the Cinderella development team it would be advantageous to drop sup-
port for the older Java 1 VMs and be able to always use the new Java 2
features; however, as we decided to stay compatible to the Microsoft VM pre-
installed in many Windows versions we did not do the transition yet. There-
fore, running Cinderella was easily possible with both Zaurus VMs; we have
prepared a packaged version that allows the user to run Cinderella with both
VMs [12].

When the Zaurus was introduced an alternate environment called Intent was
presented by TAO group [26]. This environment has its own assembly code
that is interpreted on top of a special operating system. Among other things,
there was a Java compiler to this proprietary code. At CeBIT 2002, we had
the opportunity to let Cinderella run under Intent on a Zaurus SL-5500. This
is a very fast way to execute Java on the Zaurus, significantly faster than
under any other VM. However, deployment is much more involved and error-
prone, it does not integrate well with the rest of the Zaurus, and there were
several problems that seemed non-trivial to fix. We were not able to obtain a
development version of Intent to study this further, and the Java parts do not
seem to be available any longer.

2.8 Operating Systems on the Target Devices

The Casio PDA is a Windows CE device; the SHARP uses Linux as its oper-
ating system. This makes a signficant difference in the ease of porting. With
portable devices the usual edit — compile — debug cycle is extended to edit
— compile — package — deploy — debug. The turnaround time from coding
to testing is dramatically longer. Also, the small screen makes it impossible
to have debugging output on the device.

We ported to Windows CE using the deployment environment provided with
the Jeode VM. It was not possible to integrate this with our build environment
(based on GNU make at that time, now based on Ant [5]), although we always
took care not to be dependent on platform-specific featureﬂ. Therefore, we
were not able to “release often” [1,28], as the turnaround time between code
changes and testing was half a day. Also, we could only install the Java VM
using the developer tools from Insignia; it was impossible to create a user-
installable version of Cinderella.

3 Since 1996 we have used Sun Solaris, Linux, Windows, and now Mac OS X as
primary development platform without any trouble moving from one to the other.

In contrast, porting Java software to the Zaurus is an easy task. We can
connect to the device over the network and, from the command line, observe
exactly what is happening. Since all of the standard UNIX tools are available,
software can be deployed very easily, configuration files can still be edited after
deployment, and debug logs can be obtained in the same way as on a desktop.
If it was not for the lack of speed we could even do the whole build process
on the Zaurus.

Since the Zaurus package format is well-documented, building an installable
package of Cinderella as part of our normal build process is fairly straightfor-
ward. The normal Zaurus package management tools can install this package,
making it easy for end users to use Cinderella.

3 Technical Issues

3.1 Development Environment

As a consequence of the multiple target platforms of Cinderella, which in-
cludes Java 2 SE based environments (Windows, Mac OS X, Linux/Unix),
Java 1.1 virtual machines (e.g. in standard installations of Internet Explorer
on Windows or on Mac OS 8/9), and the J2ME on the Zaurus, we cannot use
a specialized environment for any of these. Instead, we use a general purpose
Java IDE, in our case IntelliJ IDEA [10]. Version control is handled by CVS.

A big advantage of IDEA compared to other IDEs is, besides its superior sup-
port of refactorization, its nonintrusive operation. Other IDEs we evaluated,
e.g. Eclipse, cannot handle source changes caused by other programs as well
as IDEA does. This is important because of several reasons, for example we
are using the ANTLR [18] parser generator to create additional sources.

The build process is governed by Ant [5], an open source Java build tool that
has become industry standard. We can control the build both from within the
IDE and from the command-line.

For all other details, we refer to [14].

3.2 Separation of Platform-specific Code and Code Validation

As we want to share as much code as possible between the different targets,
we had to devise a way to separate platform specific code that would cause
other platforms to crash or malfunction in another way.

10

A prime example is the use of Java 2 specific code: Any occurrence of classes
that are unavailable in versions prior to Java 1.2 will cause the Microsoft just-
in-time-compiler (which is only able to handle Java 1.1.x and is turned on by
default on Windows machines) to crash, even if the class is neither instantiated
nor referenced in any other way. We circumvent this by moving all usages of
“forbidden” classes into another helper class, which will only be loaded when
we are sure to be on a Java 2 platform.

Another issue are platform specific workarounds or Ul adaptations. For ex-
ample, on Mac OS X we are changing the overall look of the application to
suit the rest of the OS. We have to do this manually, as we are not using the
Swing Toolkit but the standard AWT. We also register the application for
other events, like the application execution notification events of Mac OS X.
These changes violate the rules for 100% pure Java, but they greatly enhance
the user experience.

We do not use tools for automatic code validation. There are official tools for
checking the J2ME conformance or the Java purity of code, but we are not
able to use them. As described above, we deliberately breach the rules at some
points. Many code constructs are not allowed or deprecated, but we ignore the
warnings and work around errors at compile time, while we make sure to take
care of them at run time. A code fragment that has been deprecated for the
Java 2 platform might be the only solution for the Java 1.1.x virtual machine.

3.8 Benchmarks

To make it possible at all to use Cinderella on a PDA, the target platform has
to be both fast enough and memory efficient. When using Java, this depends
more on the VM implementation than on the processor speed or main memory
of the device. In this section we describe our experiences with the two available
virtual machines for the SHARP Zaurus.

We started our investigations directly with the whole application and not
with small platform benchmarks, as it was easy enough to try out immedi-
ately whether the application will be usable at all. At first sight, the Sun
Java 2 virtual machine, besides its increased functionality, seemed much more
responsive and somewhat faster in its calculations. With this VM and the SL-
C700, Cinderella feels fast enough to use it for real projects, while the Jeode
VM is only suitable for a demonstration prototype.

To further justify and in order to explain this rating we conducted some bench-
marks. In Table 1 we list the results of three basic tests: Startup gives the times
from the moment the user launches the application to the moment Cinderella
is responsive to user input, on a freshly booted machine. Load simple locus

11

Jeode Sun VM

Startup 30.8 sec | 23.8 sec

Load simple locus 9.0 sec | 5.5 sec

Load complicated locus 12.4 7.7 sec

Table 1
Application Benchmarks: All tests were performed on a SHARP CL-700. The times
are the averages of 3 tries. The times were taken by hand.

Jeode | Sun VM (first) | Sun VM (subs.) || Laptop

int 0.6 sec. 8.9 sec. 1.0 sec. 1.2 sec.
float 6.6 sec. 20.1 sec. 4.7 sec. 2.7 sec.
double || 7.0 sec 24.6 sec 13.0 sec 2.8 sec.

Table 2

Basic calculations with different number types. Each test is run 10000000 times.
The column first shows the result when the code is executed in the main method
of the benchmark only once. The column subs. shows the timing for the same code
encapsulated in a method, which is called several times. This timing applies to
subsequent calls only. All timings were done automatically using the internal clock
of the Zaurus.

shows the times it takes to load a construction containing a simple mechanical
three bar linkage and calculate a locus in it, as shown in Fig. 1. Load compli-
cated locus gives the times it takes to load a more complicated construction
in which the linkage is extended by another bar. The resulting locus is more
costly to calculate.

In all these benchmarks the Sun VM is a clear winner. We then concentrated
our investigation on the instruction level. Cinderella, as a mathematical ap-
plication, does a lot of basic calculations in integer and double arithmetic, so
we started by measuring the performance of basic arithmetical operations.

Table 2 shows the results of a very elementary number-crunching benchmark;
a single variable was manipulated 10 million times, every time adding, multi-
plying by, subtracting and dividing by a constant. As expected, floating-point
arithmetic is much slower because it has to be done in software. On a G4-based
laptop with a floating point unit this performance hit is not as hard.

What was unexpected for us is the poor performance of the Sun VM on its
first encounter of the code. By encapsulating the code into a method and
calling it several times we could improve the performance significantly as this
triggers the optimizing just-in-time compiler. Still, the Sun VM is slower in this
benchmark than the Jeode counterpart, which is in contrast to our perception
with the Cinderella application.

12

Jeode | Sun VM (first) | Sun VM (subs.) || Laptop

int 1.2 sec. 26.1 sec. 1.0 sec. 1.2 sec.
float 10.0 sec. 27.1 sec. 8.6 sec. 3.3 sec.
double || 10.7 sec 33.6 sec 13.1 sec 3.4 sec.

Table 3
Basic calculations with method calls

We then designed another benchmark that explains this behavior. We used the
same code and wrapped methods around the in-loop calculations, effectively
adding 10 million additional method calls. From Tab. 3 we conclude that there
is almost no penalty for the additional calls on the Sun VM, whereas the Jeode
VM slows down significantly. The performance hit is the same for the float
and the double test, and it is less for the integer test.

We conclude that the Sun VM is able to inline method calls and optimize the
compiled code for faster execution. On the other hand, the Jeode VM has to
carry out the full method calls, and the speed is dependent on the size of the
arguments and return values.

The lesson we learned here is that an application like Cinderella that is both
highly object-oriented and doing a lot of calculations benefits more from opti-
mizing the OO-specific operations than from faster calculation. The Sun VM
and its JIT is very good at optimizing object creation and inlining methods,
two bottlenecks in object oriented programming.

3.4 Utilizing Class Extraction for a Common Code Base

Not all functionality of a desktop version of Cinderella has to be available on
a PDA. For example, the built-in exercise editor, multiple viewport support
or printing do not make sense on the small devices and can be left out. This
saves valuable memory resources on the device.

A similar observation holds for the web page runtime that is used for exported
constructions. The first version of Cinderella used a Java class extractor, Jaz of
IBM alphaworks, to create both the standalone application and the web page
runtime from the same Java class files. This cut the jar file size by approx. 40%
for the application and more than 60% for the runtime [27].

For the J2ME version of Cinderella we use the same approach. We switched
from Jax to DashO-Pro [19], which is a commercial class extractor and ob-
fuscator. Jax is no longer supported, and is no longer usable for the changed
class formats of Java 1.4. Our experiences correspond to the experiences with
the web runtime, and we recommend using products like Jax or DashO-Pro

13

for J2ME applications.

3.5 Inter-device Communication

Currently, there are two major wireless technologies to link a PDA to a desktop
computer: 802.11b Wireless LAN and Bluetooth. Of these, 802.11b has the
advantage of providing a full TCP/IP protocol stack by default and having a
longer range. To the application, the PDA appears to be a normal networked
computer. Both variants are available as PDA-sized add-on cards. We used the
802.11b approach for our experiments. However, supporting Bluetooth should
work as well.

There are two basic ways to allow collaboration on a construction: One, have a
special way to create a remote view on a construction and two, have complete
and independent Cinderella instances on every device. Since our scenarios are
based on wireless network links, which are high-latency and of varying relia-
bility, the second possibility is better suited to our purposes. This is further
supported by experiences with VNC, a tool to allow remote access to graphical
desktops. It is available for PDAs, however, it is so slow that it is only barely
usable.

There are different levels on which communication could happen. We decided
to do so at the construction level, because not too much data needs to be sent
and it seems the most natural choice.

Synchronizing different constructions presents interesting consistency prob-
lems; we resolved the issue by nominating the publisher of a construction the
master. When a remote Cinderella wants to change the shared construction, it
has to ask the master copy of the construction to do so. In our current version,
we have only implemented very simple synchronization. It can happen that
linked instances get out of sync; for these cases, we provide a manual sync
operation. This is not desirable; however, this prototype works well enough to
indicate remote collaboration is a useful feature for Cinderella.

Having independent instances implies that we can calculate and display what
will happen as a result of the user’s actions before the master copy is updated.

Recently, Apple introduced Rendezvous, a technology for networked devices in
the same subnet to find each other. There is a Java 2 implementation available
[6]. We were able to adapt it for Cinderella. This makes it very easy to connect
to a published construction in the same network, without having to know IP
or port numbers. The user can just select the desired construction from a list.

14

4 Conclusions and Further Work

Based on the tests we did with the Sun VM on the SL-C700, we can confi-
dently say that on current hardware and with current JVMs, demanding Java
programs run fast enough for real-world usage. Handheld devices will continue
to become more powerful, therefore one can plan ambitious wireless classroom
scenarios that are still a bit cumbersome on today’s hardware. We urge didacts
to think about reasonable uses of this new technology in advance.

From our experiences, we can also conclude that the Java programming lan-
guage is well-suited for wireless classroom scenarios involving different devices
and configurations. Since the binaries are platform-independent, the whole
building and packaging process can happen on a powerful machine. The same
source can be used to derive desktop as well as whiteboard and PDA ver-
sions of the software, with only small, if any, changes necessary in the code to
accommodate the technical differences of the platforms. Furthermore, using
TCP/IP is trivial in Java, facilitating network use and collaboration.

For the quality of a VM our benchmarks have shown that it is most important
to do good optimization of typical code structures that are used in object
oriented programming.

The user interface, however, does require attention and modifications in the
code. A user interface targeted at desktop computers does not work well on
pen-driven devices, especially if the screen size is very limited. The alter-
nate user interface elements we implemented, Scribbling and Cinderella Flow
Menus, together lead to a much improved user experience of Cinderella on the
PDA.

Exclusive-access synchronization for multiple Cinderella instances on networked
machines leads to interesting new problems. Displaying changes before they
are committed to the master is an essential optimization to make the pro-
gram appear responsive. However, this can lead to rollbacks when a remote
Cinderella instance displays a change and only afterwards notices it cannot
update the master instance. One solution could be to allow only one person
at a time to make changes — similar to “having the chalk” in the traditional
classroom.

Our final goal is the development of an integrated mathematics PDA. The
three types of mathematical software used most in schools are spreadsheets,
computer algebra software, and interactive geometry software. These three are
now available in beta versions for PDAs. The crucial step here will be to link
these applications together in a way that the user is able to switch seamlessly
between them and transparently exchange their data.

15

5 Acknowledgments

We would like to thank Dan Stevens of Sun Microsystems for giving permission
to publish the benchmark results of the early access implementation of the
Personal Profile for Java for Zaurus. We would like to thank SHARP Europe,
in particular Saskia v. Boxberg, for providing SHARP Zaurus SL-5x00 and SL-
C700 test machines. Furthermore we thank Kurt Klaner of Casio for providing
a Casio Cassiopeia E-125G for testing.

References

[1] Kent Beck. Extreme Programming Explained: Embrace Change, Addison-
Wesley, 1999.

[2] Cinderella web site, http://www.cinderella.de.
[3] B. Dye. Mathsnet. http://www.mathsnet.net/.

[4] Frangois Guimbretiere, Terry Winograd: FlowMenu: Combining Command,
Text and Data Entry. Stanford CS Technical Report CS-TR-2000-01. May 2000.

[6] Erik Hatcher and Steve Loughran. Java Development with Ant. Manning
Publications, 2002. See also http://ant.apache.org.

[6] A.v. Hoff. A Java implementation of Rendezvous. http://www.strangeberry.
com/java_rendevous.htm.

[7] Insignia Solutions. Jeode VM Information. http://www.insignia.com/
content/products/jvmProducts.shtml.

[8] N. Jackiw.The Geometer’s Sketchpad. Key Curriculum Press, Berkeley, 1991—
1995.

[9] Java 2 Micro Edition web site. http://java.sun.com/j2me/
[10] Jetbrains, Inc. IntelliJ IDEA, version 3.0, see http://www.intellij.com.

[11] U. Kortenkamp. Foundations of Dynamic Geometry. Dissertation, ETH Ziirich
1999. Available at http://www.kortenkamps.net/papers/diss.pdf.

[12] U. Kortenkamp and D. Materlik and J. Richter-Gebert. A beta package of
Cinderella for the SHARP Zaurus series. http://www.cinderella.de/en/
info/zaurus.html.

[13] U. Kortenkamp and J. Richter-Gebert. Geometry and education in the
internet age. In Proceedings of the ED-MEDIA & ED-TELECOM 1998 World
Conference on FEducational Multimedia, Hypermedia and Telecommunications,
pages 790-799, Freiburg, March 1998. Association for the Advancement of
Computing in Education.

16

http://www.cinderella.de
http://www.mathsnet.net/
http://ant.apache.org
http://www.strangeberry.com/java_rendevous.htm
http://www.strangeberry.com/java_rendevous.htm
http://www.insignia.com/content/products/jvmProducts.shtml
http://www.insignia.com/content/products/jvmProducts.shtml
http://java.sun.com/j2me/
http://www.intellij.com
http://www.kortenkamps.net/papers/diss.pdf
http://www.cinderella.de/en/info/zaurus.html
http://www.cinderella.de/en/info/zaurus.html

[14] U. Kortenkamp and J. Richter-Gebert. Cinderella. In Erfahrungen mit Java,
chapter 16, pages 381-401. dpunkt.Verlag, Heidelberg, 1999.

[15] J.-M. Laborde and F. Bellemain. Cabri-Geometry II. Texas Instruments, 1993—
1998. Copyright Texas Instruments and Université Joseph Fourier, CNRS.

[16] D. Materlik: Using Sketch Recognition to Enhance the Human-Computer
Interface of Geometry Software. Diploma thesis at the Freie Universitat
Berlin, 2003. Also available at http://page.mi.fu-berlin.de/ materlik/
DirkMaterlikThesis.pdf.

[17] Motorola, Inc. and Sun Microsystems. Mobile Information Device Profile, v2.0
(JSR-118). http://java.sun.com/products/midp/.

[18] Parr, T. J. and Quong, R. W. ANTLR: a predicated-LL(k) parser generator.
Software-Practice and Experience. Chichester: John Wiley & Sons, Ltd.. 25,
No.7, 789-810, 1995. See also http://www.antlr.org.

[19] PreEmptive Solutions, Dasho-Pro, http://www.preemptive.com/.

[20] J. Richter-Gebert and U. Kortenkamp. Die interaktive Geometriesoftware
Cinderella. HEUREKA-Klett Softwareverlag, Stuttgart, 1999.

[21] J. Richter-Gebert and U. Kortenkamp. The Interactive Geometry Software
Cinderella. Springer-Verlag, Berlin Heidelberg New York, 1999.

[22] Complexity Issues in Dynamic Geometry. J. Richter-Gebert and U. Kortenkamp
In Foundations of Computational Mathematics (Proceedings of the Smale Fest
2000), World Scientific, 2002.

[23] Rojas, Ratl; Knipping, Lars; Raffel, Ulrich; Friedland, Gerald: Elektronische
Kreide: Eine Java-Multimedia-Tafel fiir den Présenz- und Fernunterricht.
Inform., Forsch. Entwickl. 16, No.3, 159-168 (2001).

[24] Sun Microsystems. PersonalJava specification (end of life announcement). http:
//java.sun.com/products/personaljava/.

[25] Sun Microsystems. Personal Profile for Zaurus early access version. http://
developer. java.sun.com/developer/earlyAccess/ppé4zaurus/.

[26] TAO group web site. http://tao-group.com/.

[27] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. Pratical experience with
an application extractor for java. In Proceedings of the 14th Annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA ’99), Denver, Colorado, November 1999. ACM.

[28] D. Wells, http://www.extremeprogramming.org/rules/releaseoften.htmll

17

http://page.mi.fu-berlin.de/~materlik/DirkMaterlikThesis.pdf
http://page.mi.fu-berlin.de/~materlik/DirkMaterlikThesis.pdf
http://java.sun.com/products/midp/
http://www.antlr.org
http://www.preemptive.com/
http://java.sun.com/products/personaljava/
http://java.sun.com/products/personaljava/
http://developer.java.sun.com/developer/earlyAccess/pp4zaurus/
http://developer.java.sun.com/developer/earlyAccess/pp4zaurus/
http://tao-group.com/
http://www.extremeprogramming.org/rules/releaseoften.html

	Introduction
	The Interactive Geometry Software Cinderella
	Modern Hardware for Classroom Education
	Reasons for Using Java and J2ME

	A PDA Version of Cinderella
	User Interface Issues
	Target Devices and Licensing
	Operating Systems on the Target Devices

	Technical Issues
	Development Environment
	Separation of Platform-specific Code and Code Validation
	Benchmarks
	Utilizing Class Extraction for a Common Code Base
	Inter-device Communication

	Conclusions and Further Work
	Acknowledgments
	References

